1887

Abstract

A Gram-stain-negative, aerobic, chitin-degrading, motile bacterial strain with a single polar flagellum, designated XS-10, was isolated from saline soil sampled from the rhizosphere of , Tumd Right Banner, Inner Mongolia, PR China. Strain XS-10 grew at 10–40 °C (optimum, 35 °C), pH 5.0–9.0 (optimum, pH 8.0) and 0–12.5% NaCl (optimum 2.0 %). The phylogenetic analysis based on both the 16S rRNA gene and the phylogenomic tree revealed that strain XS-10 formed a clade with MCT13 and JSS-26, sharing 98.4 and 97.5 % 16S rRNA gene similarities to JSS-26 and MCT13, respectively. Spermidine and Q-10 were the major polyamine and the major respiratory quinone, respectively. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid, two unidentified lipids and an unidentified aminophospholipid. The major fatty acids were summed feature 8 (C 7 and/or C ω6), C and C ω6. The genome of strain XS-10 consisted of a 4 154 291 bp chromosome with a DNA G+C content of 65.5 mol%. The average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization values of strain XS-10 with MCT13 and JSS-26 were 77.8 and 78.6 %, 75.9 and 76.3 %, and 22.0 and 22.9 %, respectively. Based on the phylogenetic, phenotypic, and genotypic characteristics, strain XS-10 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is XS-10 (=CGMCC 1.17078=JCM 33850).

Funding
This study was supported by the:
  • Ji-Quan Sun , National Natural Science Foundation of China , (Award 31960020)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004238
2020-05-27
2021-02-26
Loading full text...

Full text loading...

References

  1. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 1990; 34:99–119 [CrossRef][PubMed]
    [Google Scholar]
  2. Takeuchi M, Yokota A. Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb. nov., Sphingobacterium thalpophilum comb. nov. and two genospecies of the genus Sphingobacterium, and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum . J Gen Appl Microbiol 1992; 38:465–482 [CrossRef]
    [Google Scholar]
  3. Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I et al. Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola . Int J Syst Evol Microbiol 2002; 52:1485–1496 [CrossRef][PubMed]
    [Google Scholar]
  4. Busse H-J, Denner EBM, Buczolits S, Salkinoja-Salonen M, Bennasar A et al. Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas . Int J Syst Evol Microbiol 2003; 53:1253–1260 [CrossRef][PubMed]
    [Google Scholar]
  5. Yan Z-F, Lin P, Won K-H, Li C-T, Park G et al. Sphingomonas rhizophila sp. nov., isolated from rhizosphere of Hibiscus syriacus . Int J Syst Evol Microbiol 2018; 68:681–686 [CrossRef][PubMed]
    [Google Scholar]
  6. Kämpfer P, Denner EB, Meyer S, Moore ER, Busse HJ. Classification of "Pseudomonas azotocolligans" Anderson 1955, 132, in the genus Sphingomonas as Sphingomonas trueperi sp. nov. Int J Syst Bacteriol 1997; 47:577–583 [CrossRef][PubMed]
    [Google Scholar]
  7. Geng Y, Zhang Y, Qin K, Liu J, Tian J et al. Sphingomonas paeninsulae sp. nov., isolated from soil sampled at Fildes Peninsula, Antarctica. Int J Syst Evol Microbiol 2019; 69:3702–3709 [CrossRef][PubMed]
    [Google Scholar]
  8. Li Y, Bian D-R, Chang J-P, Guo L-M, Yang X-Q. Sphingomonas populi sp. nov., isolated from bark of Populus euramericana . Int J Syst Evol Microbiol 2020; 70:897–901 [CrossRef][PubMed]
    [Google Scholar]
  9. Zhu D, Niu Y, Liu D, Wang G, Zheng S. Sphingomonas gilva sp. nov., isolated from mountain soil. Int J Syst Evol Microbiol 2019; 69:3472–3477 [CrossRef][PubMed]
    [Google Scholar]
  10. Kim H, Chhetri G, Seo T. Sphingomonas edaphi sp. nov., a novel species isolated from beach soil in the Republic of Korea. Int J Syst Evol Microbiol 2020; 70:522–529 [CrossRef][PubMed]
    [Google Scholar]
  11. Cha I, Kang H, Kim H, Joh K. Sphingomonas ginkgonis sp. nov., isolated from phyllosphere of Ginkgo biloba . Int J Syst Evol Microbiol 2019; 69:3224–3229 [CrossRef][PubMed]
    [Google Scholar]
  12. Zhou X-Y, Zhang L, Su X-J, Hang P, Hu B et al. Sphingomonas flavalba sp. nov., isolated from a procymidone-contaminated soil. Int J Syst Evol Microbiol 2019; 69:2936–2941 [CrossRef][PubMed]
    [Google Scholar]
  13. Feng G-D, Wang Y-H, Zhang X-J, Chen W-D, Zhang J et al. Sphingomonas lenta sp. nov., a slowly growing bacterium isolated from an abandoned lead-zinc mine. Int J Syst Evol Microbiol 2019; 69:2214–2219 [CrossRef][PubMed]
    [Google Scholar]
  14. Sheu S-Y, Xie Y-R, Kwon S-W, Sheu C, Chen W-M. Sphingomonas crocodyli sp. nov., isolated from a crocodile pond. Int J Syst Evol Microbiol 2019; 69:2153–2160 [CrossRef][PubMed]
    [Google Scholar]
  15. Fan Q-M, Zhang R-G, Chen H-Y, Feng Q-Q, Lv J. Sphingomonas floccifaciens sp. nov., isolated from subterranean sediment. Int J Syst Evol Microbiol 2019; 69:1531–1536 [CrossRef][PubMed]
    [Google Scholar]
  16. Menon RR, Kumari S, Kumar P, Verma A, Krishnamurthi S et al. Sphingomonas pokkalii sp. nov., a novel plant associated rhizobacterium isolated from a saline tolerant pokkali rice and its draft genome analysis. Syst Appl Microbiol 2019; 42:334–342 [CrossRef][PubMed]
    [Google Scholar]
  17. Li Y-Q, Narsing Rao MP, Zhang H, Guo Y-M, Dong Z-Y et al. Description of Sphingomonas mesophila sp. nov., isolated from Gastrodia elata Blume. Int J Syst Evol Microbiol 2019; 69:1030–1034 [CrossRef][PubMed]
    [Google Scholar]
  18. Liu L, Hui N, Liang L, Zhang X, Sun Q et al. Sphingomonas deserti sp. nov., isolated from Mu Us Sandy Land soil. Int J Syst Evol Microbiol 2019; 69:441–446 [CrossRef][PubMed]
    [Google Scholar]
  19. Thaller MC, D'Andrea MM, Marmo P, Civitareale C, Casu F et al. Sphingomonas turrisvirgatae sp. nov., an agar-degrading species isolated from freshwater. Int J Syst Evol Microbiol 2018; 68:2794–2799 [CrossRef][PubMed]
    [Google Scholar]
  20. Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 2015; 528:364–369 [CrossRef][PubMed]
    [Google Scholar]
  21. Chiara P, Sotirios V, Constantina R, Evangelia PS, Georgia T et al. Metabolic pathway and cell adaptation mechanisms revealed through genomic, proteomic and transcription analysis of a Sphingomonas haloaromaticamans strain degrading orthophenylphenol. Sci Rep 2017; 7:
    [Google Scholar]
  22. Miller TR, Delcher AL, Salzberg SL, Saunders E, Detter JC et al. Genome sequence of the dioxin-mineralizing bacterium Sphingomonas wittichii RW1. J Bacteriol 2010; 192:6101–6102 [CrossRef][PubMed]
    [Google Scholar]
  23. Stolz A. Degradation of substituted naphthalenesulfonic acids by Sphingomonas xenophaga BN6. J Ind Microbiol Biot 1999; 23:391–399 [CrossRef][PubMed]
    [Google Scholar]
  24. Seah SYK, Ke J, Denis G, Horsman GP, Fortin PD et al. Characterization of a C-C bond hydrolase from Sphingomonas wittichii RW1 with novel specificities towards polychlorinated biphenyl metabolites. J Bacteriol 2007; 189:4038–4045 [CrossRef][PubMed]
    [Google Scholar]
  25. Xu L, Huang X-X, Fan D-L, Sun J-Q. Lysobacter alkalisoli sp. nov., a chitin-degrading strain isolated from saline-alkaline soil. Int J Syst Evol Microbiol 2020; 70:1273–1281 [CrossRef][PubMed]
    [Google Scholar]
  26. Ma J-P WZ, Lu P, Wang H-J, Ali SW et al. Biodegradation of the sulfonylurea herbicide chlorimuron-ethyl by the strain Pseudomonas sp. LW3. FEMS Microbiol Lett 2010; 296:203–209
    [Google Scholar]
  27. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  28. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  29. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  30. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  31. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  32. Rzhetsky A, Nei M. Theoretical Foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993; 10:1073–1095 [CrossRef][PubMed]
    [Google Scholar]
  33. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  34. Lee JS, Shin YK, Yoon JH, Takeuchi M, Pyun YR et al. Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov., and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol Microbiol 2001; 51:1491–1498 [CrossRef][PubMed]
    [Google Scholar]
  35. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  36. Xu L, Zhang H, Xing Y-T, Li N, Wang S et al. Complete genome sequence of Sphingobacterium psychroaquaticum strain SJ-25, an aerobic bacterium capable of suppressing fungal pathogens. Curr Microbiol 2020; 77:115–122 [CrossRef][PubMed]
    [Google Scholar]
  37. Rodriguez-R LM, KK T. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. Peer J 2016; 4:e1900
    [Google Scholar]
  38. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  39. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [CrossRef][PubMed]
    [Google Scholar]
  40. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  41. Kates M. Techniques of Lipidology, 2nd ed. Amsterdam: Elsevier; 1986
    [Google Scholar]
  42. Komagata K, Suzuki K. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  43. Scherer P, Kneifel H. Distribution of polyamines in methanogenic bacteria. J Bacteriol 1983; 154:1315–1322 [CrossRef][PubMed]
    [Google Scholar]
  44. Ko Y, Hwang WM, Kim M, Kang K, Ahn T-Y. Sphingomonas silvisoli sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2017; 67:2704–2710 [CrossRef][PubMed]
    [Google Scholar]
  45. Smibert RM, Krieg NR. Phenotypic Characterization. in Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  46. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  47. Kim B-C, Jeong W-J, Kim DY, Oh H-W, Kim H et al. Paenibacillus pueri sp. nov., isolated from Pu'er tea. Int J Syst Evol Microbiol 2009; 59:1002–1006 [CrossRef][PubMed]
    [Google Scholar]
  48. Fraser SL, Jorgensen JH. Reappraisal of the antimicrobial susceptibilities of Chryseobacterium and Flavobacterium species and methods for reliable susceptibility testing. Antimicrob Agents Chemother 1997; 41:2738–2741 [CrossRef][PubMed]
    [Google Scholar]
  49. Kämpfer P, Meurer U, Esser M, Hirsch T, Busse H-J. Sphingomonas pseudosanguinis sp. nov., isolated from the water reservoir of an air humidifier. Int J Syst Evol Microbiol 2007; 57:1342–1345 [CrossRef][PubMed]
    [Google Scholar]
  50. Holmes B, Owen RJ, Evans A, Malnick H, Willcox WR. Pseudomonas paucimobilis, a New Species Isolated from Human Clinical Specimens, the Hospital Environment, and Other Sources. Int J Syst Bacteriol 1977; 27:133–146 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004238
Loading
/content/journal/ijsem/10.1099/ijsem.0.004238
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error