1887

Abstract

A Gram-stain-negative, strictly aerobic, non-motile and rod-shaped bacterium, designated ZYF650, was isolated from the hadal seawater (9600 m) of the Mariana Trench. Results of phylogenetic analysis based on 16S rRNA gene sequences indicated that ZYF650 formed a lineage within the family that was distinct from the most closely related species and with 16S rRNA gene sequences similarities of 98.0 and 97.7 %, respectively. Strain ZYF650 showed average nucleotide identity values of 75.7 % with , 73.3 % with and 79.3 % with , and DNA–DNAhybridization values of 21.5, 21.3 and 22.0 % with , and , respectively, which were lower than the threshold for species delineation. Strain ZYF650 grew with 0–14 % (w/v) NaCl (optimum, 7–8 %) at a temperature range of 10–45 °C (optimum, 28 °C) and pH 6.0–9.5 (optimum, pH 7.0–8.0). The sole respiratory quinone was ubiquinone-9 (Q-9). The polar lipids in ZYF650 comprised phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, three unidentified polar lipids, two unidentified aminolipids and two phospholipids. The predominant fatty acids (more than 10 % of total fatty acids) were C ω9 (21.9 %), C (21.7 %), C 3-OH (14.0 %), C ω9 (13.2 %) and C (12.2 %). The DNA G+C content of strain ZYF650 was 55.6 %. On the basis of polyphasic taxonomic analysis, strain ZY650 is considered to represent a novel specie of the genus in the family , for which the name sp. nov. is proposed. The type strain is ZYF650 (=JCM 33013=MCCC 1K03552).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 41730530)
    • Principle Award Recipient: Xiao-Hua Zhang
  • National Natural Science Foundation of China (Award 91751202)
    • Principle Award Recipient: Xiao-Hua Zhang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004236
2020-05-22
2024-05-12
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/6/3794.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004236&mimeType=html&fmt=ahah

References

  1. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M et al. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 1992; 42:568–576 [View Article][PubMed]
    [Google Scholar]
  2. Gorshkova NM, Ivanova EP, Sergeev AF, Zhukova NV, Alexeeva Y et al. Marinobacter excellens sp. nov., isolated from sediments of the Sea of Japan. Int J Syst Evol Microbiol 2003; 53:2073–2078 [View Article][PubMed]
    [Google Scholar]
  3. Baumann L, Baumann P, Mandel M, Allen RD. Taxonomy of aerobic marine eubacteria. J Bacteriol 1972; 110:402–429 [View Article][PubMed]
    [Google Scholar]
  4. Gao W, Cui Z, Li Q, Xu G, Jia X et al. Marinobacter nanhaiticus sp. nov., polycyclic aromatic hydrocarbon-degrading bacterium isolated from the sediment of the South China Sea. Antonie van Leeuwenhoek 2013; 103:485–491 [View Article][PubMed]
    [Google Scholar]
  5. Kaeppel EC, Gärdes A, Seebah S, Grossart H-P, Ullrich MS. Marinobacter adhaerens sp. nov., isolated from marine aggregates formed with the diatom Thalassiosira weissflogii . Int J Syst Evol Microbiol 2012; 62:124–128 [View Article][PubMed]
    [Google Scholar]
  6. Montes MJ, Bozal N, Mercadé E. Marinobacter guineae sp. nov., a novel moderately halophilic bacterium from an Antarctic environment. Int J Syst Evol Microbiol 2008; 58:1346–1349 [View Article][PubMed]
    [Google Scholar]
  7. Gu J, Cai H, Yu S-L, Qu R, Yin B et al. Marinobacter gudaonensis sp. nov., isolated from an oil-polluted saline soil in a Chinese oilfield. Int J Syst Evol Microbiol 2007; 57:250–254 [View Article][PubMed]
    [Google Scholar]
  8. Kim J-O, Lee H-J, Han S-I, Whang K-S. Marinobacter halotolerans sp. nov., a halophilic bacterium isolated from a saltern crystallizing pond. Int J Syst Evol Microbiol 2017; 67:460–465 [View Article][PubMed]
    [Google Scholar]
  9. Margesin R, Schinner F. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 2001; 5:73–83 [View Article][PubMed]
    [Google Scholar]
  10. Zhao X, Liu J, Zhou S, Zheng Y, Wu Y et al. Diversity of culturable heterotrophic bacteria from the Mariana Trench and their ability to degrade macromolecules. Mar Life Sci Technol 2020; 2:181–193 [View Article]
    [Google Scholar]
  11. Liu J, Zheng Y, Lin H, Wang X, Li M et al. Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome 2019; 7:47 [View Article][PubMed]
    [Google Scholar]
  12. Vaidya B, Kumar R, Korpole S, Tanuku NRS, Pinnaka AK. Marinobacter nitratireducens sp. nov., a halophilic and lipolytic bacterium isolated from coastal surface sea water. Int J Syst Evol Microbiol 2015; 65:2056–2063 [View Article][PubMed]
    [Google Scholar]
  13. Huo Y-Y, Wang C-S, Yang J-Y, Wu M, Xu X-W. Marinobacter mobilis sp. nov. and Marinobacter zhejiangensis sp. nov., halophilic bacteria isolated from the East China Sea. Int J Syst Evol Microbiol 2008; 58:2885–2889 [View Article][PubMed]
    [Google Scholar]
  14. Ausubel F, Brent R, Kingston R, Moore D, Seidman J et al. Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology, 3rd ed. New York: Wiley; 1995
    [Google Scholar]
  15. Zhang Z, Yu T, Xu T, Zhang X-H. Aquimarina pacifica sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2014; 64:1991–1997 [View Article][PubMed]
    [Google Scholar]
  16. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  17. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  20. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  21. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  23. Beveridge TJ, Lawrence JR, Murray RG et al. Sampling and staining for light microscopy. In Reddy CA, Beveridge TJ, Breznak TA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007. pp 19–33
    [Google Scholar]
  24. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  25. Tindall BJ, Sikorski J, Smibert RA, Krieg NR et al. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007 pp 330–393
    [Google Scholar]
  26. Anand AAP, Vennison SJ, Sankar SG, Prabhu DIG, Vasan PT et al. Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion. J Insect Sci 2010; 10:1071–20 [View Article][PubMed]
    [Google Scholar]
  27. Yoon J-H, Lee K-C, Kho YH, Kang KH, Kim C-J et al. Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2002; 52:123–130 [View Article][PubMed]
    [Google Scholar]
  28. Anil Kumar P, Aravind R, Francis K, Bhumika V, Ritika C et al. Shivajiella indica gen. nov., sp. nov., a marine bacterium of the family "Cyclobacteriaceae" with nitrate reducing activity. Syst Appl Microbiol 2012; 35:320–325 [View Article][PubMed]
    [Google Scholar]
  29. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  30. Xie C-H, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003; 49:345–349 [View Article][PubMed]
    [Google Scholar]
  31. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  32. Collins MD, Shah HN. Fatty acid, menaquinone and polar lipid composition of Rothia dentocariosa . Arch Microbiol 1984; 137:247–249 [View Article]
    [Google Scholar]
  33. Komagata K, Suzuki KI. 4 lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19:161–207
    [Google Scholar]
  34. Moore ERB, Arnscheidt A, Krüger A, Strömpl C, Mau M et al. Simplified protocols for the preparation of genomic DNA from bacterial cultures. Molecular Microbial Ecology Manual 1999; 1:1–15
    [Google Scholar]
  35. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article][PubMed]
    [Google Scholar]
  36. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics 2007; 23:673–679 [View Article][PubMed]
    [Google Scholar]
  37. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article][PubMed]
    [Google Scholar]
  38. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955–964 [View Article][PubMed]
    [Google Scholar]
  39. Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL et al. Rfam: updates to the RNA families database. Nucleic Acids Res 2009; 37:D136–D140 [View Article][PubMed]
    [Google Scholar]
  40. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  41. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  42. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  43. Lee OO, Lai PY, Wu H-xian, Zhou X-jian, Miao L et al. Marinobacter xestospongiae sp. nov., isolated from the marine sponge Xestospongia testudinaria collected from the Red Sea. Int J Syst Evol Microbiol 2012; 62:1980–1985 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004236
Loading
/content/journal/ijsem/10.1099/ijsem.0.004236
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error