1887

Abstract

A Gram-stain-negative, short rod-shaped, yellow bacterium (strain LMO-1) was isolated from deep-sea sediment of the Mariana Trench, Challenger Deep. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain LMO-1 belonged to genus , with the highest sequence similarity to CC-Nfb-2 (96.3 %), followed by W18RD (96.1 %), 6P (96.0 %) and W16RD (95.9 %). The predominant polar lipids were phosphatidylethanolamine, sphingoglycolipid, phosphatidylglycerol and phosphatidylcholine. The main cellular fatty acids were summed feature 8 (C ω7 and/or C ω6), C and C 2-OH. The major polyamine was -homospermidine and the predominant isoprenoid quinone was ubiquinone-10. The genome DNA G+C content of strain LMO-1 was 69.2 mol%. The average nucleotide identity and DNA–DNA hybridization values between strain LMO-1 and CC-Nfb-2 were 75.9 and 20.5 %, respectively. Based on these data, LMO-1 should be classified as representing a novel species of the genus , for which the name sp. nov. is proposed. The type strain is LMO-1 (=MCCC 1K04066=JCM 33666).

Funding
This study was supported by the:
  • Innovative Research Group Project of the National Natural Science Foundation of China (CN) (Award 91951117)
    • Principle Award Recipient: Yu Zhang
  • National Key Research and Development Program of China (Award No. 2018YFC0309800,2016YFC0300709)
    • Principle Award Recipient: Shanshan Yang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004235
2020-06-04
2024-05-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/6/3809.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004235&mimeType=html&fmt=ahah

References

  1. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 1990; 34:99–119 [View Article][PubMed]
    [Google Scholar]
  2. Maruyama T, Park H-D, Ozawa K, Tanaka Y, Sumino T et al. Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Syst Evol Microbiol 2006; 56:85–89 [View Article][PubMed]
    [Google Scholar]
  3. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51:1405–1417 [View Article][PubMed]
    [Google Scholar]
  4. Zhang Y-Q, Chen Y-G, Li W-J, Tian X-P, Xu L-H et al. Sphingomonas yunnanensis sp. nov., a novel gram-negative bacterium from a contaminated plate. Int J Syst Evol Microbiol 2005; 55:2361–2364 [View Article][PubMed]
    [Google Scholar]
  5. White DC, Sutton SD, Ringelberg DB. The genus Sphingomonas: physiology and ecology. Curr Opin Biotechnol 1996; 7:301–306 [View Article][PubMed]
    [Google Scholar]
  6. Yim M-S, Yau YCW, Matlow A, So J-S, Zou J, YCW Y, So J-S ZJ et al. A novel selective growth medium-PCR assay to isolate and detect Sphingomonas in environmental samples. J Microbiol Methods 2010; 82:19–27 [View Article][PubMed]
    [Google Scholar]
  7. Kim S-J, Moon J-Y, Lim J-M, Ahn J-H, Weon H-Y et al. Sphingomonas aerophila sp. nov. and Sphingomonas naasensis sp. nov., isolated from air and soil, respectively. Int J Syst Evol Microbiol 2014; 64:926–932 [View Article][PubMed]
    [Google Scholar]
  8. Lee KC, Kim KK, Kim J-S, Kim D-S, Ko S-H et al. Sphingomonas vulcanisoli sp. nov., isolated from soil of a lava forest. Int J Syst Evol Microbiol 2015; 65:3320–3325 [View Article][PubMed]
    [Google Scholar]
  9. Margesin R, Zhang D-C, Busse H-J. Sphingomonas alpina sp. nov., a psychrophilic bacterium isolated from alpine soil. Int J Syst Evol Microbiol 2012; 62:1558–1563 [View Article][PubMed]
    [Google Scholar]
  10. Wittich R-M, Busse H-J, Kämpfer P, Macedo AJ, Tiirola M et al. Sphingomonas fennica sp. nov. and Sphingomonas haloaromaticamans sp. nov., outliers of the genus Sphingomonas. Int J Syst Evol Microbiol 2007; 57:1740–1746 [View Article][PubMed]
    [Google Scholar]
  11. Romanenko LA, Uchino M, Frolova GM, Tanaka N, Kalinovskaya NI et al. Sphingomonas molluscorum sp. nov., a novel marine isolate with antimicrobial activity. Int J Syst Evol Microbiol 2007; 57:358–363 [View Article][PubMed]
    [Google Scholar]
  12. An D-S, Liu Q-M, Lee H-G, Jung M-S, Kim S-C et al. Sphingomonas ginsengisoli sp. nov. and Sphingomonas sediminicola sp. nov. Int J Syst Evol Microbiol 2013; 63:496–501 [View Article][PubMed]
    [Google Scholar]
  13. Widdel F, Bak F. Gram-Negative mesophilic sulfate-reducing bacteria. The Prokaryotes 1992; 4:3352–3378
    [Google Scholar]
  14. Nunoura T, Takaki Y, Hirai M, Shimamura S, Makabe A et al. Hadal biosphere: insight into the microbial ecosystem in the deepest Ocean on earth. Proc Natl Acad Sci U S A 2015; 112:E1230–E1236 [View Article][PubMed]
    [Google Scholar]
  15. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985; 49:1–7 [View Article][PubMed]
    [Google Scholar]
  16. Embley TM. The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. Lett Appl Microbiol 1991; 13:171–174 [View Article][PubMed]
    [Google Scholar]
  17. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  18. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  21. Rzhetsky A, Nei M. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 1992; 35:367–375 [View Article][PubMed]
    [Google Scholar]
  22. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article][PubMed]
    [Google Scholar]
  23. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963–112914 [View Article][PubMed]
    [Google Scholar]
  24. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  25. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  26. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  27. Auch AF, Klenk H-P, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010; 2:142–148 [View Article][PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60–14 [View Article][PubMed]
    [Google Scholar]
  29. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the AD hoc Committee on reconciliation of approaches to bacterial Systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  30. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article][PubMed]
    [Google Scholar]
  31. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2019 [View Article][PubMed]
    [Google Scholar]
  32. Skerman VB. A guide to the identification of the genera of bacteria. Academic Medicine 1960; 35:92
    [Google Scholar]
  33. Fukushima RS, Weimer PJ, Kunz DA. Photocatalytic interaction of resazurin N -oxide with cysteine optimizes preparation of anaerobic culture media. Anaerobe 2002; 8:29–34 [View Article]
    [Google Scholar]
  34. Zhu L, Si M, Li C, Xin K, Chen C et al. Sphingomonas gei sp. nov., isolated from roots of Geum aleppicum . Int J Syst Evol Microbiol 2015; 65:1160–1166 [View Article][PubMed]
    [Google Scholar]
  35. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  36. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  37. Kates M. Lipid extraction procedures. Techniques of lipidology Elsevier. 3 Amsterdam: Elsevier; 1986 pp 100–111
    [Google Scholar]
  38. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988; 11:1–8 [View Article]
    [Google Scholar]
  39. Scherer P, Kneifel H. Distribution of polyamines in methanogenic bacteria. J Bacteriol 1983; 154:1315–1322 [View Article][PubMed]
    [Google Scholar]
  40. Feng G-D, Yang S-Z, Xiong X, Li H-P, Zhu H-H. Sphingomonas metalli sp. nov., isolated from an abandoned lead-zinc mine. Int J Syst Evol Microbiol 2016; 66:2046–2051 [View Article][PubMed]
    [Google Scholar]
  41. Manandhar P, Zhang G, Hu Y, Lama A, Gao F et al. Sphingomonas prati sp. nov., isolated from alpine meadow soil of Tanggula mountain in Qinghai – Tibetan Plateau. Int J Syst Evol Microbiol 2016; 66:4269–4275
    [Google Scholar]
  42. Lin S-Y, Shen F-T, Lai W-A, Zhu Z-L, Chen W-M et al. Sphingomonas formosensis sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from agricultural soil. Int J Syst Evol Microbiol 2012; 62:1581–1586 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004235
Loading
/content/journal/ijsem/10.1099/ijsem.0.004235
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error