1887

Abstract

A polyphasic taxonomic study was performed on an unidentified -like Gram-stain-positive bacterium designated strain C605018/01/1 isolated from a milk sample collected from the udder of a cow at . Comparative 16S rRNA gene sequencing showed that the bacterium belonged to the genus and was most closely related to the type strain of (99.76 %); sequence similarities to all other species were below 97 %. The wet-lab DNA–DNA hybridization values among strain C605018/01/1 and DSM 13483ᵀ were low, 16.9 % (reciprocal, 49.8 %). Pertaining to the whole genome sequence with a total length of 2.02 Mb and 1654 protein counts, the novel strain C605018/01/01 displayed a G+C content of 51.6 % mol%. The presence of the major menaquinone MK-9(H) supported the affiliation of this strain to the genus . The polar lipid profile consisted of the major components diphosphatidylglycerol, phosphatidylcholine, phosphatidylinositol, phosphatidylinositol-mannoside and unidentified glycolipid and aminophospholipids. Based on these results it is proposed that strain C605018/01/1 should be classified as representing a novel species, sp. nov. The type strain C605018/01/1 (CCUG 45425=DSM 107286=BCCM/LMG 30783)

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004230
2020-06-26
2024-05-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/7/4105.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004230&mimeType=html&fmt=ahah

References

  1. Yassin AF, Hupfer H, Siering C, Schumann P. Comparative chemotaxonomic and phylogenetic studies on the genus Arcanobacterium Collins et al. 1982 emend. Lehnen et al. 2006: proposal for Trueperella gen. nov. and emended description of the genus Arcanobacterium . Int J Syst Evol Microbiol 2011; 61:1265–1274 [View Article][PubMed]
    [Google Scholar]
  2. Collins MD, Jones D, Schofield GM. Reclassification of 'Corynebacterium haemolyticum' (MacLean, Liebow & Rosenberg) in the genus Arcanobacterium gen.nov. as Arcanobacterium haemolyticum nom.rev., comb.nov. J Gen Microbiol 1982; 128:1279–1281 [View Article][PubMed]
    [Google Scholar]
  3. Hijazin M, Prenger-Berninghoff E, Sammra O, Alber J, Lämmler C et al. Arcanobacterium canis sp. nov., isolated from otitis externa of a dog, and emended description of the genus Arcanobacterium Collins et al. 1983 emend. Yassin et al. 2011. Int J Syst Evol Microbiol 2012; 62:2201–2205 [View Article]
    [Google Scholar]
  4. Hijazin M, Sammra O, Ülbegi-Mohyla H, Nagib S, Alber J et al. Arcanobacterium phocisimile sp. nov., isolated from harbour seals. Int J Syst Evol Microbiol 2013; 63:2019–2024 [View Article][PubMed]
    [Google Scholar]
  5. Sammra O, Balbutskaya A, Ülbegi-Mohyla H, Nagib S, Lämmler C et al. Arcanobacterium pinnipediorum sp. nov., isolated from a harbour seal. Int J Syst Evol Microbiol 2015; 65:4539–4543 [View Article][PubMed]
    [Google Scholar]
  6. Sammra O, Rau J, Wickhorst J-P, Alssahen M, Hassan AA et al. Arcanobacterium wilhelmae sp. nov., isolated from the genital tract of a rhinoceros (Rhinoceros unicornis). Int J Syst Evol Microbiol 2017; 67:2093–2097 [View Article][PubMed]
    [Google Scholar]
  7. Diop K, Morand A, Dubus JC, Fournier P-E, Raoult D et al. 'Arcanobacterium urinimassiliense' sp. nov., a new bacterium isolated from the urogenital tract. New Microbes New Infect 2017; 18:15–17 [View Article][PubMed]
    [Google Scholar]
  8. Fall NS, Lo CI, Fournier P-E, Sokhna C, Raoult D et al. Arcanobacterium ihumii sp. nov., Varibaculum vaginae sp. nov. and Tessaracoccus timonensis sp. nov., isolated from vaginal swabs from healthy Senegalese women. New Microbes New Infect 2019; 31:100585 [View Article][PubMed]
    [Google Scholar]
  9. Foster G, Hunt B. Distribution of Arcanobacterium pluranimalium in animals examined in United Kingdom veterinary laboratories. J Vet Diagn Invest 2011; 23:962–964
    [Google Scholar]
  10. Bisping W, Amtsberg G. Gram method. In Bisping W, Amtsberg G. (editors) Colour Atlas for the Diagnosis of Bacterial Pathogens in Animals Berlin and Hamburg: Paul Parey Scientific Publishers; 1988 p p.336
    [Google Scholar]
  11. Parker Hitchens A, Hitchens AP. Advantages of culture mediums containing small percentages of agar. J Infect Dis 1921; 29:390–407 [View Article]
    [Google Scholar]
  12. Ülbegi-Mohyla H, Hassan AA, Kanbar T, Alber J, Lämmler C et al. Synergistic and antagonistic hemolytic activities of bacteria of genus Arcanobacterium and CAMP-like hemolysis of Arcanobacterium phocae and Arcanobacterium haemolyticum with Psychrobacter phenylpyruvicus . Res Vet Sci 2009; 87:186–188 [View Article][PubMed]
    [Google Scholar]
  13. Sammra O, Balbutskaya A, Nagib S, Alber J, Lämmler C et al. Properties of an Arcanobacterium haemolyticum strain isolated from a donkey. Berl Münch Tierärztl Wochenschr 2014; 127:56–60[PubMed]
    [Google Scholar]
  14. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  15. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  16. Pruesse E, Peplies J, Glöckner FO, Yarza P, Richter M. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  17. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W et al. Silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2012; 35:7188–7196 [View Article]
    [Google Scholar]
  18. Brosius J, Dull TJ, Sleeter DD, Noller HF. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli . J Mol Biol 1981; 148:107–127 [View Article]
    [Google Scholar]
  19. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [View Article][PubMed]
    [Google Scholar]
  20. Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author Seattle: Department of Genome Sciences, University of Washington; 2005
    [Google Scholar]
  21. Jukes TH, Cantor CR. Evolution of the protein molecules. In Munro HN. editor Mammalian Protein Metabolism New York: Academic Press; 1969 pp 21–132
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  23. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article][PubMed]
    [Google Scholar]
  24. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article][PubMed]
    [Google Scholar]
  25. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  26. Ziemke F, Höfle MG, Lalucat J, Rosselló-Mora R. Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 1998; 48 Pt 1:179–186 [View Article][PubMed]
    [Google Scholar]
  27. Pitcher DG, Saunders NA, Owen RJ. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 1989; 8:151–156 [View Article]
    [Google Scholar]
  28. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990a; 66:199–202 [View Article]
    [Google Scholar]
  29. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990b; 13:128–130 [View Article]
    [Google Scholar]
  30. Altenburgera P, Kämpferb P, Makristathisc A, Lubitza W, Bussea H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996; 47:39–52 [View Article]
    [Google Scholar]
  31. Stolz A, Busse H-J, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007; 57:572–576 [View Article][PubMed]
    [Google Scholar]
  32. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  33. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004230
Loading
/content/journal/ijsem/10.1099/ijsem.0.004230
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error