1887

Abstract

A polyphasic taxonomic study was performed on an unidentified -like Gram-stain-positive bacterium designated strain C605018/01/1 isolated from a milk sample collected from the udder of a cow at . Comparative 16S rRNA gene sequencing showed that the bacterium belonged to the genus and was most closely related to the type strain of (99.76 %); sequence similarities to all other species were below 97 %. The wet-lab DNA–DNA hybridization values among strain C605018/01/1 and DSM 13483ᵀ were low, 16.9 % (reciprocal, 49.8 %). Pertaining to the whole genome sequence with a total length of 2.02 Mb and 1654 protein counts, the novel strain C605018/01/01 displayed a G+C content of 51.6 % mol%. The presence of the major menaquinone MK-9(H) supported the affiliation of this strain to the genus . The polar lipid profile consisted of the major components diphosphatidylglycerol, phosphatidylcholine, phosphatidylinositol, phosphatidylinositol-mannoside and unidentified glycolipid and aminophospholipids. Based on these results it is proposed that strain C605018/01/1 should be classified as representing a novel species, sp. nov. The type strain C605018/01/1 (CCUG 45425=DSM 107286=BCCM/LMG 30783)

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004230
2020-06-26
2021-05-15
Loading full text...

Full text loading...

References

  1. Yassin AF, Hupfer H, Siering C, Schumann P. Comparative chemotaxonomic and phylogenetic studies on the genus Arcanobacterium Collins et al. 1982 emend. Lehnen et al. 2006: proposal for Trueperella gen. nov. and emended description of the genus Arcanobacterium . Int J Syst Evol Microbiol 2011; 61:1265–1274 [CrossRef][PubMed]
    [Google Scholar]
  2. Collins MD, Jones D, Schofield GM. Reclassification of 'Corynebacterium haemolyticum' (MacLean, Liebow & Rosenberg) in the genus Arcanobacterium gen.nov. as Arcanobacterium haemolyticum nom.rev., comb.nov. J Gen Microbiol 1982; 128:1279–1281 [CrossRef][PubMed]
    [Google Scholar]
  3. Hijazin M, Prenger-Berninghoff E, Sammra O, Alber J, Lämmler C et al. Arcanobacterium canis sp. nov., isolated from otitis externa of a dog, and emended description of the genus Arcanobacterium Collins et al. 1983 emend. Yassin et al. 2011. Int J Syst Evol Microbiol 2012; 62:2201–2205 [CrossRef]
    [Google Scholar]
  4. Hijazin M, Sammra O, Ülbegi-Mohyla H, Nagib S, Alber J et al. Arcanobacterium phocisimile sp. nov., isolated from harbour seals. Int J Syst Evol Microbiol 2013; 63:2019–2024 [CrossRef][PubMed]
    [Google Scholar]
  5. Sammra O, Balbutskaya A, Ülbegi-Mohyla H, Nagib S, Lämmler C et al. Arcanobacterium pinnipediorum sp. nov., isolated from a harbour seal. Int J Syst Evol Microbiol 2015; 65:4539–4543 [CrossRef][PubMed]
    [Google Scholar]
  6. Sammra O, Rau J, Wickhorst J-P, Alssahen M, Hassan AA et al. Arcanobacterium wilhelmae sp. nov., isolated from the genital tract of a rhinoceros (Rhinoceros unicornis). Int J Syst Evol Microbiol 2017; 67:2093–2097 [CrossRef][PubMed]
    [Google Scholar]
  7. Diop K, Morand A, Dubus JC, Fournier P-E, Raoult D et al. 'Arcanobacterium urinimassiliense' sp. nov., a new bacterium isolated from the urogenital tract. New Microbes New Infect 2017; 18:15–17 [CrossRef][PubMed]
    [Google Scholar]
  8. Fall NS, Lo CI, Fournier P-E, Sokhna C, Raoult D et al. Arcanobacterium ihumii sp. nov., Varibaculum vaginae sp. nov. and Tessaracoccus timonensis sp. nov., isolated from vaginal swabs from healthy Senegalese women. New Microbes New Infect 2019; 31:100585 [CrossRef][PubMed]
    [Google Scholar]
  9. Foster G, Hunt B. Distribution of Arcanobacterium pluranimalium in animals examined in United Kingdom veterinary laboratories. J Vet Diagn Invest 2011; 23:962–964
    [Google Scholar]
  10. Bisping W, Amtsberg G. Gram method. In Bisping W, Amtsberg G. (editors) Colour Atlas for the Diagnosis of Bacterial Pathogens in Animals Berlin and Hamburg: Paul Parey Scientific Publishers; 1988 p p.336
    [Google Scholar]
  11. Parker Hitchens A, Hitchens AP. Advantages of culture mediums containing small percentages of agar. J Infect Dis 1921; 29:390–407 [CrossRef]
    [Google Scholar]
  12. Ülbegi-Mohyla H, Hassan AA, Kanbar T, Alber J, Lämmler C et al. Synergistic and antagonistic hemolytic activities of bacteria of genus Arcanobacterium and CAMP-like hemolysis of Arcanobacterium phocae and Arcanobacterium haemolyticum with Psychrobacter phenylpyruvicus . Res Vet Sci 2009; 87:186–188 [CrossRef][PubMed]
    [Google Scholar]
  13. Sammra O, Balbutskaya A, Nagib S, Alber J, Lämmler C et al. Properties of an Arcanobacterium haemolyticum strain isolated from a donkey. Berl Münch Tierärztl Wochenschr 2014; 127:56–60[PubMed]
    [Google Scholar]
  14. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  15. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  16. Pruesse E, Peplies J, Glöckner FO, Yarza P, Richter M. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  17. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W et al. Silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2012; 35:7188–7196 [CrossRef]
    [Google Scholar]
  18. Brosius J, Dull TJ, Sleeter DD, Noller HF. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli . J Mol Biol 1981; 148:107–127 [CrossRef]
    [Google Scholar]
  19. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [CrossRef][PubMed]
    [Google Scholar]
  20. Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author Seattle: Department of Genome Sciences, University of Washington; 2005
    [Google Scholar]
  21. Jukes TH, Cantor CR. Evolution of the protein molecules. In Munro HN. editor Mammalian Protein Metabolism New York: Academic Press; 1969 pp 21–132
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  23. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [CrossRef][PubMed]
    [Google Scholar]
  24. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [CrossRef][PubMed]
    [Google Scholar]
  25. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  26. Ziemke F, Höfle MG, Lalucat J, Rosselló-Mora R. Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 1998; 48 Pt 1:179–186 [CrossRef][PubMed]
    [Google Scholar]
  27. Pitcher DG, Saunders NA, Owen RJ. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 1989; 8:151–156 [CrossRef]
    [Google Scholar]
  28. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990a; 66:199–202 [CrossRef]
    [Google Scholar]
  29. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990b; 13:128–130 [CrossRef]
    [Google Scholar]
  30. Altenburgera P, Kämpferb P, Makristathisc A, Lubitza W, Bussea H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996; 47:39–52 [CrossRef]
    [Google Scholar]
  31. Stolz A, Busse H-J, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007; 57:572–576 [CrossRef][PubMed]
    [Google Scholar]
  32. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [CrossRef]
    [Google Scholar]
  33. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004230
Loading
/content/journal/ijsem/10.1099/ijsem.0.004230
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error