1887

Abstract

The class comprises an ecologically and metabolically diverse group of bacteria best known for dissimilatory sulphate reduction and predatory behaviour. Although this lineage is the fourth described class of the phylum , it rarely affiliates with other proteobacterial classes and is frequently not recovered as a monophyletic unit in phylogenetic analyses. Indeed, one branch of the class encompassing like predators was recently reclassified into a separate proteobacterial class, the . Here we systematically explore the phylogeny of taxa currently assigned to these classes using 120 conserved single-copy marker genes as well as rRNA genes. The overwhelming majority of markers reject the inclusion of the classes and in the phylum . Instead, the great majority of currently recognized members of the class are better classified into four novel phylum-level lineages. We propose the names phyl. nov. and phyl. nov. for two of these phyla, based on the oldest validly published names in each lineage, and retain the placeholder name SAR324 for the third phylum pending formal description of type material. Members of the class represent a separate phylum for which we propose the name phyl. nov. based on priority in the literature and general recognition of the genus phyl. nov. includes the taxa previously classified in the phylum , and these reclassifications imply that the ability of sulphate reduction was vertically inherited in the rather than laterally acquired as previously inferred. Our analysis also indicates the independent acquisition of predatory behaviour in the phyla and , which is consistent with their distinct modes of action. This work represents a stable reclassification of one of the most taxonomically challenging areas of the bacterial tree and provides a robust framework for future ecological and systematic studies.

Funding
This study was supported by the:
  • Australian Research Council (Award DP120103498)
    • Principle Award Recipient: Philip Hugenholtz
  • Australian Research Council (Award FL150100038)
    • Principle Award Recipient: Philip Hugenholtz
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004213
2020-11-05
2021-10-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/11/5972.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004213&mimeType=html&fmt=ahah

References

  1. Stackebrandt E, Murray RGE, Truper HG. Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives”. Int J Syst Bacteriol 1988; 38:321–325 [View Article]
    [Google Scholar]
  2. Kuever J, Rainey FA, Widdel F. Class IV. Deltaproteobacteria class. nov. In Brenner DJ, Krieg NR, Staley JT, GG M. (editors) Bergey’s Manual of Systematic Bacteriology, Second edition, vol 2 (The Proteobacteria), Part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) 922 New York: Springer, New York; 2005
    [Google Scholar]
  3. Müller AL, Kjeldsen KU, Rattei T, Pester M, Loy A. Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases. ISME J 2015; 9:1152–1165 [View Article]
    [Google Scholar]
  4. Bond DR, Holmes DE, Tender LM, Lovley DR. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 2002; 295:483–485 [View Article]
    [Google Scholar]
  5. Holmes DE, Nicoll JS, Bond DR, Lovley DR. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Appl Environ Microbiol 2004; 70:6023–6030 [View Article]
    [Google Scholar]
  6. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT et al. Extracellular electron transfer via microbial nanowires. Nature 2005; 435:1098–1101 [View Article]
    [Google Scholar]
  7. Stolp H, Starr MP. Bdellovibrio bacteriovorus gen. et sp. n., a predatory, ectoparasitic, and bacteriolytic microorganism. Antonie Van Leeuwenhoek 1963; 29:217–248 [View Article]
    [Google Scholar]
  8. Sockett RE. Predatory lifestyle of Bdellovibrio bacteriovorus. Annu Rev Microbiol 2009; 63:523–539 [View Article]
    [Google Scholar]
  9. Lu F, Cai J. The protective effect of Bdellovibrio-and-like organisms (BALO) on tilapia fish fillets against Salmonella enterica ssp. enterica serovar Typhimurium. Lett Appl Microbiol 2010; 51:625–631 [View Article]
    [Google Scholar]
  10. Cao H, He S, Wang H, Hou S, Lu L et al. Bdellovibrios, potential biocontrol bacteria against pathogenic Aeromonas hydrophila. Vet Microbiol 2012; 154:413–418 [View Article]
    [Google Scholar]
  11. Wen C, Xue M, Liang H, Zhou S. Evaluating the potential of marine Bacteriovorax sp. DA5 as a biocontrol agent against vibriosis in Litopenaeus vannamei larvae. Vet Microbiol 2014; 173:84–91 [View Article]
    [Google Scholar]
  12. Cao H, An J, Zheng W, He S. Vibrio cholerae pathogen from the freshwater-cultured whiteleg shrimp Penaeus vannamei and control with Bdellovibrio bacteriovorus. J Invertebr Pathol 2015; 130:13–20 [View Article]
    [Google Scholar]
  13. Dashiff A, Kadouri DE. Predation of oral pathogens by Bdellovibrio bacteriovorus 109J. Mol Oral Microbiol 2011; 26:19–34 [View Article]
    [Google Scholar]
  14. Van Essche M, Quirynen M, Sliepen I, Loozen G, Boon N et al. Killing of anaerobic pathogens by predatory bacteria. Mol Oral Microbiol 2011; 26:52–61 [View Article]
    [Google Scholar]
  15. Kadouri DE, To K, Shanks RMQ, Doi Y. Predatory bacteria: a potential ally against multidrug-resistant Gram-negative pathogens. PLoS One 2013; 8:e63397 [View Article]
    [Google Scholar]
  16. Shanks RMQ, Davra VR, Romanowski EG, Brothers KM, Stella NA et al. An eye to a kill: using predatory bacteria to control Gram-negative pathogens associated with ocular infections. PLoS One 2013; 8:e66723 [View Article]
    [Google Scholar]
  17. Iebba V, Totino V, Santangelo F, Gagliardi A, Ciotoli L et al. Bdellovibrio bacteriovorus directly attacks Pseudomonas aeruginosa and Staphylococcus aureus cystic fibrosis isolates. Front Microbiol 2014; 5:280 [View Article]
    [Google Scholar]
  18. Hart BA, Zahler SA. Lytic enzyme produced by Myxococcus xanthus. J Bacteriol 1966; 92:1632–1637 [View Article]
    [Google Scholar]
  19. Berleman JE, Chumley T, Cheung P, Kirby JR. Rippling is a predatory behavior in Myxococcus xanthus. J Bacteriol 2006; 188:5888–5895 [View Article]
    [Google Scholar]
  20. Eisen J. The RecA protein as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. J Mol Evol 1995; 41:1105–1123 [View Article]
    [Google Scholar]
  21. Sheridan PP, Freeman KH, Brenchley JE. Estimated minimal divergence times of the major bacterial and archaeal phyla estimated minimal divergence times of the major bacterial and archaeal phyla. Geomicrobiol J 2003; 20:1–14
    [Google Scholar]
  22. Dodsworth JA, Blainey PC, Murugapiran SK, Swingley WD, Ross CA et al. Single-cell and metagenomic analyses indicate a fermentative and saccharolytic lifestyle for members of the OP9 lineage. Nat Commun 1854; 2013:4
    [Google Scholar]
  23. Lang JM, Darling AE, Eisen JA. Phylogeny of bacterial and archaeal genomes using conserved genes: supertrees and supermatrices. PLoS One 2013; 8:e62510 [View Article]
    [Google Scholar]
  24. Jernigan KK, Bordenstein SR. Ankyrin domains across the tree of life. PeerJ 2014; 2:e264 [View Article]
    [Google Scholar]
  25. Soo RM, Skennerton CT, Sekiguchi Y, Imelfort M, Paech SJ et al. An expanded genomic representation of the phylum Cyanobacteria. Genome Biol Evol 2014; 6:1031–1045 [View Article]
    [Google Scholar]
  26. Baker BJ, Lazar CS, Teske AP, Dick GJ. Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria. Microbiome 2015; 3:14 [View Article]
    [Google Scholar]
  27. Nobu MK, Dodsworth JA, Murugapiran SK, Rinke C, Gies EA et al. Phylogeny and physiology of candidate phylum ‘Atribacteria’ (OP9/JS1) inferred from cultivation-independent genomics. ISME J 2016; 10:273–286 [View Article]
    [Google Scholar]
  28. Lampert Y, Kelman D, Nitzan Y, Dubinsky Z, Behar A et al. Phylogenetic diversity of bacteria associated with the mucus of Red Sea corals. FEMS Microbiol Ecol 2008; 64:187–198 [View Article]
    [Google Scholar]
  29. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E et al. A phylogeny-driven genomic encyclopaedia of bacteria and archaea. Nature 2009; 462:1056–1060 [View Article]
    [Google Scholar]
  30. Beiko RG. Telling the whole story in a 10,000-genome world. Biol Direct 2011; 6:34 [View Article]
    [Google Scholar]
  31. Castelle CJ, Hug LA, Wrighton KC, Thomas BC, Williams KH et al. Extraordinary phylogenetic diversity and metabolic versatility in aquifer sediment. Nat Commun 2013; 4:2120 [View Article]
    [Google Scholar]
  32. Di Rienzi SC, Sharon I, Wrighton KC, Koren O, Hug LA et al. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. eLife 2013; 2:e01102 [View Article]
    [Google Scholar]
  33. McLean JS, Lombardo M-J, Badger JH, Edlund A, Novotny M et al. Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum. Proc Natl Acad Sci U S A 2013; 110:E2390–E2399 [View Article]
    [Google Scholar]
  34. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article]
    [Google Scholar]
  35. Zhang Y, Sievert SM. Pan-genome analyses identify lineage- and niche-specific markers of evolution and adaptation in Epsilonproteobacteria. Front Microbiol 2014; 5:110 [View Article]
    [Google Scholar]
  36. Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun 2016; 7:13219 [View Article]
    [Google Scholar]
  37. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ et al. A new view of the tree of life. Nat Microbiol 2016; 1:16048 [View Article]
    [Google Scholar]
  38. Hahn MW, Schmidt J, Koll U, Rohde M, Verbarg S et al. Silvanigrella aquatica gen. nov., sp. nov., isolated from a freshwater lake, description of Silvanigrellaceae fam. nov. and Silvanigrellales ord. nov., reclassification of the order Bdellovibrionales in the class Oligoflexia, reclassification of the families Bacteriovoracaceae and Halobacteriovoraceae in the new order Bacteriovoracales ord. nov., and reclassification of the family Pseudobacteriovoracaceae in the order Oligoflexales. Int J Syst Evol Microbiol 2017; 67:2555–2568 [View Article]
    [Google Scholar]
  39. Probst AJ, Castelle CJ, Singh A, Brown CT, Anantharaman K et al. Genomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO 2 concentrations. Environ Microbiol 2017; 19:459–474 [View Article]
    [Google Scholar]
  40. Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 2013; 4:2304 [View Article]
    [Google Scholar]
  41. Whidden C, Zeh N, Beiko RG. Supertrees based on the subtree prune-and-regraft distance. Syst Biol 2014; 63:566–581 [View Article]
    [Google Scholar]
  42. Haroon MF, Thompson LR, Parks DH, Hugenholtz P, Stingl U. A catalogue of 136 microbial draft genomes from Red Sea metagenomes. Sci Data 2016; 3:160050 [View Article]
    [Google Scholar]
  43. Vanwonterghem I, Jensen PD, Rabaey K, Tyson GW. Genome-centric resolution of microbial diversity, metabolism and interactions in anaerobic digestion. Environ Microbiol 2016; 18:3144–3158 [View Article]
    [Google Scholar]
  44. Tully BJ, Graham ED, Heidelberg JF. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci Data 2018; 5:170203 [View Article]
    [Google Scholar]
  45. Garrity GM, Holt JG, Phylum B. Thermodesulfobacteria phy. nov. In Boone DR, Castenholz RW. (editors) Bergey’s Manual of Systematic Bacteriology The Archaea and the deeply branching and phototrophic Bacteria) 2(1) New York: Springer-Verlag; 2001 pp 389–393
    [Google Scholar]
  46. Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 1998; 180:2975–2982 [View Article]
    [Google Scholar]
  47. Zverlov V, Klein M, Lücker S, Friedrich MW, Kellermann J et al. Lateral gene transfer of dissimilatory (bi)sulfite reductase revisited. J Bacteriol 2005; 187:2203–2208 [View Article]
    [Google Scholar]
  48. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. Isme J 2012; 6:610–618 [View Article]
    [Google Scholar]
  49. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590–D596 [View Article]
    [Google Scholar]
  50. Klein M, Friedrich M, Roger AJ, Hugenholtz P, Fishbain S et al. Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J Bacteriol 2001; 183:6028–6035 [View Article]
    [Google Scholar]
  51. Friedrich MW. Phylogenetic analysis reveals multiple lateral transfers of adenosine-5′-phosphosulfate reductase genes among sulfate-reducing microorganisms. J Bacteriol 2002; 184:278–289 [View Article]
    [Google Scholar]
  52. Meyer B, Kuever J. Phylogeny of the alpha and beta subunits of the dissimilatory adenosine-5′-phosphosulfate (APS) reductase from sulfate-reducing prokaryotes – origin and evolution of the dissimilatory sulfate-reduction pathway. Microbiology 2007; 153:2026–2044 [View Article]
    [Google Scholar]
  53. Gadagkar SR, Rosenberg MS, Kumar S. Inferring species phylogenies from multiple genes: concatenated sequence tree versus consensus gene tree. J. Exp. Zool. 2005; 304B:64–74 [View Article]
    [Google Scholar]
  54. Tonini J, Moore A, Stern D, Shcheglovitova M, Ortí G. Concatenation and species tree methods exhibit statistically indistinguishable accuracy under a range of simulated conditions. PLoS Curr 2015; 7: [View Article]
    [Google Scholar]
  55. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article]
    [Google Scholar]
  56. Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y et al. Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.). Front Microbiol 2017; 8:682 [View Article]
    [Google Scholar]
  57. Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y et al. Addendum: comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.). Front Microbiol 2018; 9: [View Article]
    [Google Scholar]
  58. Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol 2011; 7:e1002195 [View Article]
    [Google Scholar]
  59. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article]
    [Google Scholar]
  60. Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 2001; 18:691–699 [View Article]
    [Google Scholar]
  61. SQ L, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol 2008; 25:1307–1320
    [Google Scholar]
  62. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article]
    [Google Scholar]
  63. Shen X-X, Hittinger CT, Rokas A. Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nat Ecol Evol 2017; 1:126 [View Article]
    [Google Scholar]
  64. Hug LA, Castelle CJ, Wrighton KC, Thomas BC, Sharon I et al. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome 2013; 1:22 [View Article]
    [Google Scholar]
  65. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 2013; 499:431–437 [View Article]
    [Google Scholar]
  66. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article]
    [Google Scholar]
  67. Aberer AJ, Kobert K, Stamatakis A. Exabayes: massively parallel Bayesian tree inference for the whole-genome era. Mol Biol Evol 2014; 31:2553–2556 [View Article]
    [Google Scholar]
  68. Zhang C, Rabiee M, Sayyari E, Mirarab S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 2018; 19:153 [View Article]
    [Google Scholar]
  69. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree Project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31:241–250 [View Article]
    [Google Scholar]
  70. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res 2014; 42:D643–D648 [View Article]
    [Google Scholar]
  71. Lagesen K, Hallin P, Rødland EA, Stærfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article]
    [Google Scholar]
  72. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article]
    [Google Scholar]
  73. Ludwig W et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article]
    [Google Scholar]
  74. R Core Team 2016; R: a language and environment for statistical computing. R Found Stat Comput Vienna Austria [Internet] http://www.r-project.org 0:{ISBN} 3-900051-07-0
    [Google Scholar]
  75. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article]
    [Google Scholar]
  76. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article]
    [Google Scholar]
  77. Dress AWM, Flamm C, Fritzsch G, Grünewald S, Kruspe M et al. Noisy: identification of problematic columns in multiple sequence alignments. Algorithms Mol Biol 2008; 3:7 [View Article]
    [Google Scholar]
  78. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 2016; 44:D286–D293 [View Article]
    [Google Scholar]
  79. Letunic I, Bork P. Interactive tree of life (iTOL) V3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–W245 [View Article]
    [Google Scholar]
  80. Oksanen J, Blanchet F, Kindt R, Legendre P, O’Hara R. 2016; Vegan: community ecology package. R package 2.3-3 https://cran.r-project.org/web/packa. Available from: https://cran.r-project.org/package=vegan p
    [Google Scholar]
  81. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2015; 12:59–60 [View Article]
    [Google Scholar]
  82. Cáceres MD, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology 2009; 90:3566–3574 [View Article]
    [Google Scholar]
  83. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O et al. 2011; Scikit-learn: machine learning in Python. Vol. 12, Journal of Machine Learning Research http://scikit-learn.org Available from
    [Google Scholar]
  84. Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure 1975; 405:442–451 [View Article]
    [Google Scholar]
  85. Baldi P, Brunak S, Chauvin Y, Andersen CAF, Nielsen H. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 2000; 16:412–424 [View Article]
    [Google Scholar]
  86. Wright TD, Vergin KL, Boyd PW, Giovannoni SJ. A novel δ-subdivision proteobacterial lineage from the lower ocean surface layer. Appl Environ Microbiol 1997; 63:1441–1448 [View Article]
    [Google Scholar]
  87. Hug LA, Thomas BC, Sharon I, Brown CT, Sharma R et al. Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages. Environ Microbiol 2016; 18:159–173 [View Article]
    [Google Scholar]
  88. Khachane AN, Timmis KN, dos Santos V. Uracil content of 16S rRNA of thermophilic and psychrophilic prokaryotes correlates inversely with their optimal growth temperatures. Nucleic Acids Res 2005; 33:4016–4022 [View Article]
    [Google Scholar]
  89. Mooers Arne Ø., Holmes EC. The evolution of base composition and phylogenetic inference. Trends Ecol Evol 2000; 15:365–369 [View Article]
    [Google Scholar]
  90. Gribaldo S, Philippe H. Ancient phylogenetic relationships. Theor Popul Biol 2002; 61:391–408 [View Article]
    [Google Scholar]
  91. Slobodkin AI, Reysenbach A-L, Slobodkina GB, Kolganova TV, Kostrikina NA et al. Dissulfuribacter thermophilus gen. nov., sp. nov., a thermophilic, autotrophic, sulfur-disproportionating, deeply branching deltaproteobacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 2013; 63:1967–1971 [View Article]
    [Google Scholar]
  92. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA et al. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G.thermocatenulatus, G. thermoleovorans, G. kaustophilus and G.thermodenitrificans. Int J Syst Evol Microbiol 2001; 51:433–446 [View Article]
    [Google Scholar]
  93. Yamaoka T, Satoh K, Katoh S. Photosynthetic activities of a thermophilic blue-green alga. Plant Cell Physiol 1978; 19:943–954 [View Article]
    [Google Scholar]
  94. Nunoura T, Oida H, Miyazaki M, Suzuki Y, Takai K et al. Desulfothermus okinawensis sp. nov., a thermophilic and heterotrophic sulfate-reducing bacterium isolated from a deep-sea hydrothermal field. Int J Syst Evol Microbiol 2007; 57:2360–2364 [View Article]
    [Google Scholar]
  95. Slobodkin AI, Reysenbach A-L, Slobodkina GB, Baslerov RV, Kostrikina NA et al. Thermosulfurimonas dismutans gen. nov., sp. nov., an extremely thermophilic sulfur-disproportionating bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 2012; 62:2565–2571 [View Article]
    [Google Scholar]
  96. Krukenberg V, Harding K, Richter M, Glöckner FO, Gruber-Vodicka HR et al. Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane. Environ Microbiol 2016; 18:3073–3091 [View Article]
    [Google Scholar]
  97. Slobodkin AI, Slobodkina GB, Panteleeva AN, Chernyh NA, Novikov AA et al. Dissulfurimicrobium hydrothermale gen. nov., sp. nov., a thermophilic, autotrophic, sulfur-disproportionating deltaproteobacterium isolated from a hydrothermal pond. Int J Syst Evol Microbiol 2016; 66:1022–1026 [View Article]
    [Google Scholar]
  98. Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol 2017; 2:1533–1542 [View Article]
    [Google Scholar]
  99. Devereux R, He SH, Doyle CL, Orkland S, Stahl DA et al. Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J Bacteriol 1990; 172:3609–3619 [View Article]
    [Google Scholar]
  100. Shivani Y, Subhash Y, Sasikala C, Ramana CV. Halodesulfovibrio spirochaetisodalis gen. nov. sp. nov. and reclassification of four Desulfovibrio spp. Int J Syst Evol Microbiol 2017; 67:87–93 [View Article]
    [Google Scholar]
  101. Gilmour CC, Elias DA, Kucken AM, Brown SD, Palumbo AV et al. Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation. Appl Environ Microbiol 2011; 77:3938–3951 [View Article]
    [Google Scholar]
  102. Wrighton KC, Castelle CJ, Wilkins MJ, Hug LA, Sharon I et al. Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer. Isme J 2014; 8:1452–1463 [View Article]
    [Google Scholar]
  103. Narasingarao P, Häggblom MM. Pelobacter seleniigenes sp. nov., a selenate-respiring bacterium. Int J Syst Evol Microbiol 2007; 57:1937–1942 [View Article]
    [Google Scholar]
  104. Schink B. Fermentation of 2,3-butanediol by Pelobacter carbinolicus sp. nov. and Pelobacter propionicus sp. nov., and evidence for propionate formation from C2 compounds. Arch Microbiol 1984; 137:33–41 [View Article]
    [Google Scholar]
  105. Schink B. Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. nov. Arch Microbiol 1985; 142:295–301 [View Article]
    [Google Scholar]
  106. Schnell S, Brune A, Schink B. Degradation of hydroxyhydroquinone by the strictly anaerobic fermenting bacterium Pelobacter massiliensis sp. nov. Arch Microbiol 1991; 155:511–516 [View Article]
    [Google Scholar]
  107. Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJP et al. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 1993; 159:336–344 [View Article]
    [Google Scholar]
  108. Schink B, Pfennig N. Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium. Arch Microbiol 1982; 133:195–201 [View Article]
    [Google Scholar]
  109. Nakai R, Nishijima M, Tazato N, Handa Y, Karray F et al. Oligoflexus tunisiensis gen. nov., sp. nov., a Gram-negative, aerobic, filamentous bacterium of a novel proteobacterial lineage, and description of Oligoflexaceae fam. nov., Oligoflexales ord. nov. and Oligoflexia classis nov. Int J Syst Evol Microbiol 2014; 64:3353–3359 [View Article]
    [Google Scholar]
  110. Whitman WB. Modest proposals to expand the type material for naming of prokaryotes. Int J Syst Evol Microbiol 2016; 66:2108–2112 [View Article]
    [Google Scholar]
  111. Baer ML, Ravel J, Chun J, Hill RT, Williams HN. A proposal for the reclassification of Bdellovibrio stolpii and Bdellovibrio starrii into a new genus, Bacteriovorax gen. nov. as Bacteriovorax stolpii comb. nov. and Bacteriovorax starrii comb. nov., respectively. Int J Syst Evol Microbiol 2000; 50:219–224 [View Article]
    [Google Scholar]
  112. Davidov Y, Jurkevitch E. Diversity and evolution of Bdellovibrio-and-like organisms (BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov., and description of the Bacteriovorax–Peredibacter clade as Bacteriovoracaceae fam. nov. Int J Syst Evol Microbiol 2004; 54:1439–1452 [View Article]
    [Google Scholar]
  113. Koval SF, Williams HN, Stine OC, Colin Stine O. Reclassification of Bacteriovorax marinus as Halobacteriovorax marinus gen. nov., comb. nov. and Bacteriovorax litoralis as Halobacteriovorax litoralis comb. nov.; description of Halobacteriovoraceae fam. nov. in the class Deltaproteobacteria. Int J Syst Evol Microbiol 2015; 65:593–597 [View Article]
    [Google Scholar]
  114. Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT et al. The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 2004; 22:554–559 [View Article]
    [Google Scholar]
  115. Rabus R, Venceslau SS, Wöhlbrand L, Voordouw G, Wall JD et al. A post-genomic view of the ecophysiology, catabolism and biotechnological relevance of sulphate-reducing prokaryotes In: Advances in Microbial Physiology; 2015 pp 55–321
    [Google Scholar]
  116. Wasmund K, Mußmann M, Loy A. The life sulfuric: microbial ecology of sulfur cycling in marine sediments. Environ Microbiol Rep 2017; 9:323–344 [View Article]
    [Google Scholar]
  117. Anantharaman K, Hausmann B, Jungbluth SP, Kantor RS, Lavy A et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. Isme J 2018; 12:1715–1728 [View Article]
    [Google Scholar]
  118. Hausmann B, Pelikan C, Herbold CW, Köstlbacher S, Albertsen M et al. Peatland Acidobacteria with a dissimilatory sulfur metabolism. Isme J 2018; 12:1729–1742 [View Article]
    [Google Scholar]
  119. Jurkevitch E. Predatory behaviors in bacteria — diversity and transitions. Microbe Mag 2007; 2:67–73 [View Article]
    [Google Scholar]
  120. Pasternak Z, Pietrokovski S, Rotem O, Gophna U, Lurie-Weinberger MN et al. By their genes ye shall know them: genomic signatures of predatory bacteria. Isme J 2013; 7:756–769 [View Article]
    [Google Scholar]
  121. Konovalova A, Petters T, Søgaard-Andersen L. Extracellular biology of Myxococcus xanthus. FEMS Microbiol Rev 2010; 34:89–106 [View Article]
    [Google Scholar]
  122. Muñoz-Dorado J, Marcos-Torres FJ, García-Bravo E, Moraleda-Muñoz A, Pérez J. Myxobacteria: Moving, killing, feeding, and surviving together. Front Microbiol 2016; 7:781 [View Article]
    [Google Scholar]
  123. Soo RM, Woodcroft BJ, Parks DH, Tyson GW, Hugenholtz P. Back from the dead; the curious tale of the predatory cyanobacterium Vampirovibrio chlorellavorus. PeerJ 2015; 3:e968 [View Article]
    [Google Scholar]
  124. Yamamoto E, Muramatsu H, Nagai K. Vulgatibacter incomptus gen. nov., sp. nov. and Labilithrix luteola gen. nov., sp. nov., two myxobacteria isolated from soil in Yakushima Island, and the description of Vulgatibacteraceae fam. nov., Labilitrichaceae fam. nov. and Anaeromyxobacteraceae fam. nov. Int J Syst Evol Microbiol 2014; 64:3360–3368 [View Article]
    [Google Scholar]
  125. Suzuki D, Li Z, Cui X, Zhang C, Katayama A. Reclassification of Desulfobacterium anilini as Desulfatiglans anilini comb. nov. within Desulfatiglans gen. nov., and description of a 4-chlorophenol-degrading sulfate-reducing bacterium, Desulfatiglans parachlorophenolica sp. nov. Int J Syst Evol Microbiol 2014; 64:3081–3086 [View Article]
    [Google Scholar]
  126. Cravo-Laureau C, Matheron R, Cayol J-L, Joulian C, Hirschler-Réa A. Desulfatibacillum aliphaticivorans gen. nov., sp. nov., an n-alkane- and n-alkene-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 2004; 54:77–83 [View Article]
    [Google Scholar]
  127. Cravo-Laureau C, Matheron R, Joulian C, Cayol J-L, Hirschler-Réa A. Desulfatibacillum alkenivorans sp. nov., a novel n-alkene-degrading, sulfate-reducing bacterium, and emended description of the genus Desulfatibacillum. Int J Syst Evol Microbiol 2004; 54:1639–1642 [View Article]
    [Google Scholar]
  128. Wenter R, Wanner G, Schüler D, Overmann J. Ultrastructure, tactic behaviour and potential for sulfate reduction of a novel multicellular magnetotactic prokaryote from North Sea sediments. Environ Microbiol 2009; 11:1493–1505 [View Article]
    [Google Scholar]
  129. Balk M, Altinbas M, Rijpstra WIC, Sinninghe Damste JS, Stams AJM. Desulfatirhabdium butyrativorans gen. nov., sp. nov., a butyrate-oxidizing, sulfate-reducing bacterium isolated from an anaerobic bioreactor. Int J Syst Evol Microbiol 2008; 58:110–115 [View Article]
    [Google Scholar]
  130. Widdel F. Anaerober Abbau von Fettsäuren und Benzoaesäure durch neu isolierte Arten Sulfat-reduzierender Bakterien. Dissertation. Georg-August-Universität zu Göttingen 1980
    [Google Scholar]
  131. Watanabe M, Higashioka Y, Kojima H, Fukui M. Desulfosarcina widdelii sp. nov. and Desulfosarcina alkanivorans sp. nov., hydrocarbon-degrading sulfate-reducing bacteria isolated from marine sediment and emended description of the genus Desulfosarcina. Int J Syst Evol Microbiol 2017; 67:2994–2997 [View Article]
    [Google Scholar]
  132. Higashioka Y, Kojima H, Watanabe M, Fukui M. Desulfatitalea tepidiphila gen. nov., sp. nov., a sulfate-reducing bacterium isolated from tidal flat sediment. Int J Syst Evol Microbiol 2013; 63:761–765 [View Article]
    [Google Scholar]
  133. Rees GN, Patel BK. Desulforegula conservatrix gen. nov., sp. nov., a long-chain fatty acid-oxidizing, sulfate-reducing bacterium isolated from sediments of a freshwater lake. Int J Syst Evol Microbiol 2001; 51:1911–1916 [View Article]
    [Google Scholar]
  134. Suzuki D, Ueki A, Amaishi A, Ueki K. Desulfoluna butyratoxydans gen. nov., sp. nov., a novel Gram-negative, butyrate-oxidizing, sulfate-reducing bacterium isolated from an estuarine sediment in Japan. Int J Syst Evol Microbiol 2008; 57:849–855
    [Google Scholar]
  135. Kuever J, Rainey FA, Widdel F, Order I. Desulfurellales ord. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, Second edition, vol 2 (The Proteobacteria), Part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) 922 New York: Springer; 2006
    [Google Scholar]
  136. Ben Ali Gam Z, Oueslati R, Abdelkafi S, Casalot L, Tholozan JL et al. Desulfovibrio tunisiensis sp. nov., a novel weakly halotolerant, sulfate-reducing bacterium isolated from exhaust water of a Tunisian oil refinery. Int J Syst Evol Microbiol 2009; 59:1059–1063 [View Article][PubMed]
    [Google Scholar]
  137. Krekeler D, Sigalevich P, Teske A, Cypioka H, Cohen Y. Desulfovibrio oxyclinae sp. nov. In List of new names and new combinations previously effectively, but not validly, published. Validation List No. 76. Int J Syst Evol Microbiol 2000; 50:1699–1700
    [Google Scholar]
  138. Krekeler D, Sigalevich P, Teske A, Cypionka H. Cohen Y. A sulfate-reducing bacterium from the oxic layer of a microbial mat from Solar Lake (Sinai), Desulfovibrio oxyclinae sp. nov. Arch Microbiol 1997; 50:1699–1700
    [Google Scholar]
  139. Caumette P, Cohen Y, Matheron R. Isolation and characterization of Desulfovibrio halophilus sp. nov., a halophilic sulfate-reducing bacterium isolated from solar lake (Sinai). Syst Appl Microbiol 1991; 14:33–38 [View Article]
    [Google Scholar]
  140. Cao J, Gayet N, Zeng X, Shao Z, Jebbar M et al. Pseudodesulfovibrio indicus gen. nov., sp. nov., a piezophilic sulfate-reducing bacterium from the Indian Ocean and reclassification of four species of the genus Desulfovibrio. Int J Syst Evol Microbiol 2016; 66:3904–3911 [View Article]
    [Google Scholar]
  141. Warthmann R, Vasconcelos C, Sass H, McKenzie JA. Desulfovibrio brasiliensis sp. nov., a moderate halophilic sulfate-reducing bacterium from Lagoa Vermelha (Brazil) mediating dolomite formation. Extremophiles 2005; 9:255–261 [View Article]
    [Google Scholar]
  142. Sun B, Cole JR, Sanford RA, Tiedje JM. Isolation and characterization of Desulfovibrio dechloracetivorans sp. nov., a marine dechlorinating bacterium growing by coupling the oxidation of acetate to the reductive dechlorination of 2-Chlorophenol. Appl Environ Microbiol 2000; 66:2408–2413 [View Article]
    [Google Scholar]
  143. Haouari O, Fardeau M-L, Casalot L, Tholozan J-L, Hamdi M et al. Isolation of sulfate-reducing bacteria from Tunisian marine sediments and description of Desulfovibrio bizertensis sp. nov. Int J Syst Evol Microbiol 2006; 56:2909–2913 [View Article]
    [Google Scholar]
  144. Basso O, Caumette P, Magot M. Desulfovibrio putealis sp. nov., a novel sulfate-reducing bacterium isolated from a deep subsurface aquifer. Int J Syst Evol Microbiol 2005; 55:101–104 [View Article][PubMed]
    [Google Scholar]
  145. Reichenbecher W, Schink B. Desulfovibrio inopinatus, sp. nov., a new sulfate-reducing bacterium that degrades hydroxyhydroquinone (1,2,4-trihydroxybenzene). Arch Microbiol 1997; 168:338–344 [View Article]
    [Google Scholar]
  146. Reichenbacher W, Schink B. Desulfovibrio inopinatus, sp. nov. In Validation of publication of new names and new combinations previously effectively published outside the IJSB. Validation List no. 68. Int J Syst Bacteriol 1999; 49:1–3 [View Article]
    [Google Scholar]
  147. Le Gall J. A new species of Desulfovibrio. J Bacteriol 1963; 86:1120 [View Article][PubMed]
    [Google Scholar]
  148. van Houten BHGW, Meulepas RJW, van Doesburg W, Smidt H, Muyzer G et al. Desulfovibrio paquesii sp. nov., a hydrogenotrophic sulfate-reducing bacterium isolated from a synthesis-gas-fed bioreactor treating zinc- and sulfate-rich wastewater. Int J Syst Evol Microbiol 2009; 59:229–233 [View Article]
    [Google Scholar]
  149. Sass H, Berchtold M, Branke J, König H, Cypionka H et al. Psychrotolerant sulfate-reducing bacteria from an oxic freshwater sediment description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp. nov. Syst Appl Microbiol 1998; 21:212–219 [View Article]
    [Google Scholar]
  150. Hernandez-Eugenio G, Fardeau M-L, Patel BKC, Macarie H, Garcia J-L et al. Desulfovibrio mexicanus sp. nov., a sulfate-reducing bacterium isolated from an upflow anaerobic sludge blanket (UASB) reactor treating cheese wastewaters. Anaerobe 2000; 6:305–312 [View Article]
    [Google Scholar]
  151. Pecheritsyna SA, Rivkina EM, Akimov VN, Shcherbakova VA. Desulfovibrio arcticus sp. nov., a psychrotolerant sulfate-reducing bacterium from a cryopeg. Int J Syst Evol Microbiol 2012; 62:33–37 [View Article]
    [Google Scholar]
  152. Sass H, Ramamoorthy S, Yarwood C, Langner H, Schumann P et al. Desulfovibrio idahonensis sp. nov., sulfate-reducing bacteria isolated from a metal(loid)-contaminated freshwater sediment. Int J Syst Evol Microbiol 2009; 59:2208–2214 [View Article]
    [Google Scholar]
  153. Hernandez-Eugenio G, Fardeau M-L, Patel BKC, Macarie H, Garcia J-L et al. Desulfovibrio mexicanus sp. nov. In List of new names and new combinations previously effectively, but not validly, published. Validation List No 79. Int J Syst Evol Microbiol 2001; 51:263–265 [View Article]
    [Google Scholar]
  154. Baena S, Fardeau M-L, Labat M, Ollivier B, Garcia J-L et al. Desulfovibrio aminophilus sp. nov., a novel amino acid degrading and sulfate reducing bacterium from an anaerobic dairy wastewater lagoon. Syst Appl Microbiol 1998; 21:498–504 [View Article]
    [Google Scholar]
  155. Baena S, Fardeau M-L, Labat M, Ollivier B, Garcia J-L et al. Desulfovibrio aminophilus sp. nov. In Validation of publication of new names and new combinations previously effectively published outside the IJSB. Validation List no. 69. Int J Syst Evol Microbiol 1999; 49:341–342 [View Article]
    [Google Scholar]
  156. Postgate JR, Campbell LL. Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria. Bacteriol Rev 1966; 30:732–738 [View Article]
    [Google Scholar]
  157. Magot M, Basso O, Tardy-Jacquenod C, Caumette P. Desulfovibrio bastinii sp. nov. and Desulfovibrio gracilis sp. nov., moderately halophilic, sulfate-reducing bacteria isolated from deep subsurface oilfield water. Int J Syst Evol Microbiol 2004; 54:1693–1697 [View Article]
    [Google Scholar]
  158. Vandieken V, Knoblauch C, Jørgensen BB. Desulfovibrio frigidus sp. nov. and Desulfovibrio ferrireducens sp. nov., psychrotolerant bacteria isolated from Arctic fjord sediments (Svalbard) with the ability to reduce Fe(III). Int J Syst Evol Microbiol 2006; 56:681–685 [View Article]
    [Google Scholar]
  159. Alazard D, Dukan S, Urios A, Verhé F, Bouabida N et al. Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. Int J Syst Evol Microbiol 2003; 53:173–178 [View Article]
    [Google Scholar]
  160. Nielsen JT, Liesack W, Finster K. Desulfovibrio zosterae sp. nov., a new sulfate reducer isolated from surface-sterilized roots of the seagrass Zostera marina. Int J Syst Evol Microbiol 1999; 49:859–865 [View Article]
    [Google Scholar]
  161. Ollivier B, Cord-Ruwisch R, Hatchikian EC, Garcia JL. Characterization of Desulfovibrio fructosovorans sp. nov. Arch Microbiol 1988; 149:447–450 [View Article]
    [Google Scholar]
  162. Mogensen GL, Kjeldsen KU, Ingvorsen K. Desulfovibrio aerotolerans sp. nov., an oxygen tolerant sulphate-reducing bacterium isolated from activated sludge. Anaerobe 2005; 11:339–349 [View Article]
    [Google Scholar]
  163. Qatibi AI, Nivière V, Garcia JL. Desulfovibrio alcoholovorans sp. nov., a sulfate-reducing bacterium able to grow on glycerol, 1,2- and 1,3-propanediol. Arch Microbiol 1991; 155:143–148 [View Article]
    [Google Scholar]
  164. Ouattara AS, Patel BKC, Cayol J-L, Cuzin N, Traore AS et al. Isolation and characterization of Desulfovibrio burkinensis sp. nov. from an African ricefield, and phylogeny of Desulfovibrio alcoholivorans. Int J Syst Bacteriol 1999; 49:639–643
    [Google Scholar]
  165. Nanninga HJ, Gottschal JC. Properties of Desulfovibrio carbinolicus sp. nov. and other sulfate-reducing bacteria isolated from an anaerobic-purification plant. Appl Environ Microbiol 1987; 53:802–809 [View Article]
    [Google Scholar]
  166. Allen TD, Kraus PF, Lawson PA, Drake GR, Balkwill DL et al. Desulfovibrio carbinoliphilus sp. nov., a benzyl alcohol-oxidizing, sulfate-reducing bacterium isolated from a gas condensate-contaminated aquifer. Int J Syst Evol Microbiol 2008; 58:1313–1317 [View Article]
    [Google Scholar]
  167. Sakaguchi T, Arakaki A, Matsunaga T. Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. Int J Syst Evol Microbiol 2002; 52:215–221 [View Article]
    [Google Scholar]
  168. Chamkh F, Spröer C, Lemos PC, Besson S, El Asli A-G et al. Desulfovibrio marrakechensis sp. nov., a 1,4-tyrosol-oxidizing, sulfate-reducing bacterium isolated from olive mill wastewater. Int J Syst Evol Microbiol 2009; 59:936–942 [View Article]
    [Google Scholar]
  169. Ollivier B, Cord Ruwisch R, Hatchikian EC, Garcia JL. Desulfovibrio fructosovorans sp. nov. In Validation of publication of new names and new combinations previously effectively published outside the IJSB. List no. 32. Int J Syst Bacteriol 1990; 40:105–106
    [Google Scholar]
  170. Nanninga HJ, Gottscal JC. Desulfovibrio carbinolicus sp. nov. In Validation of publication of new names and new combinations previously effectively published outside the IJSB. List no. 55. Int J Syst Bacteriol 1995; 45:879–880
    [Google Scholar]
  171. Qatibi AI, Nivière V, Garcia JL. Desulfovibrio alcoholovorans sp. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB: List No. 55. Int J Syst Bacteriol 1995; 45:879–880 [View Article]
    [Google Scholar]
  172. Feio MJ, Zinkevich V, Beech IB, Llobet-Brossa E, Eaton P et al. Desulfovibrio alaskensis sp. nov., a sulphate-reducing bacterium from a soured oil reservoir. Int J Syst Evol Microbiol 2004; 54:1747–1752 [View Article][PubMed]
    [Google Scholar]
  173. Dang PN, Dang TCH, Lai TH, Stan-Lotter H. Desulfovibrio vietnamensis sp.nov., a halophilic sulfate-reducing bacterium from Vietnamese oil fields. Anaerobe 1996; 2:385–392 [View Article]
    [Google Scholar]
  174. Dang PN, Dang TCH, Lai TH, Stan-Lotter H. Desulfovibrio vietnamensis sp. nov. In List of new names and new combinations previously effectively, but not validly, published. List no. 86. Int J Syst Evol Microbiol 2002; 52:1075–1076
    [Google Scholar]
  175. Magot M, Caumette P, Desperrier JM, Matheron R, Dauga C et al. Desulfovibrio longus sp. nov., a sulfate-reducing bacterium isolated from an oil-producing well. Int J Syst Bacteriol 1992; 42:398–402 [View Article]
    [Google Scholar]
  176. Miranda-Tello E et al. Desulfovibrio capillatus sp. nov., a novel sulfate-reducing bacterium isolated from an oil field separator located in the Gulf of Mexico. Anaerobe 2003; 9:97–103 [View Article]
    [Google Scholar]
  177. Euzeby JP. Validation List no. 149. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2013; 63:1–5
    [Google Scholar]
  178. Redburn AC, Patel BKC. Desulfovibrio longreachii sp. nov., a sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. FEMS Microbiol Lett 1994; 115:33–38 [View Article]
    [Google Scholar]
  179. López-Cortés A, Fardeau M-L, Fauque G, Joulian C, Ollivier B. Reclassification of the sulfate- and nitrate-reducing bacterium Desulfovibrio vulgaris subsp. oxamicus as Desulfovibrio oxamicus sp. nov., comb. nov. Int J Syst Evol Microbiol 2006; 56:1495–1499 [View Article]
    [Google Scholar]
  180. Trinkerl M, Breunig A, Schauder R, König H. Desulfovibrio termitidis sp. nov., a carbohydrate-degrading sulfate-reducing bacterium from the hindgut of a termite. Syst Appl Microbiol 1990; 13:372–377 [View Article]
    [Google Scholar]
  181. Trinkerl M, Breunig A, Schauder R, Konig H. Desulfovibrio termitidis sp. nov. In Validation of publication of new names and new combinations previously effectively published outside the IJSB. List no 36. Int J Syst Bacteriol 1991; 41:178–179
    [Google Scholar]
  182. Redburn AC, Patel BKC. Desulfovibrio longreachii sp. nov. In Validation of publication of new names and new combinations previously effectively published outside the IJSB. List no. 55. Int J Syst Bacteriol 1995; 45:879–880
    [Google Scholar]
  183. Loubinoux J, Valente FMA, Pereira IAC, Costa A, Grimont PAD et al. Reclassification of the only species of the genus Desulfomonas, Desulfomonas pigra, as Desulfovibrio piger comb. nov. Int J Syst Evol Microbiol 2002; 52:1305–1308
    [Google Scholar]
  184. Audiffrin C, Cayol J-L, Joulian C, Casalot L, Thomas P et al. Desulfonauticus submarinus gen. nov., sp. nov., a novel sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 2003; 53:1585–1590 [View Article]
    [Google Scholar]
  185. Mayilraj S, Kaksonen AH, Cord-Ruwisch R, Schumann P, Spröer C et al. Desulfonauticus autotrophicus sp. nov., a novel thermophilic sulfate-reducing bacterium isolated from oil-production water and emended description of the genus Desulfonauticus. Extremophiles 2009; 13:247–255 [View Article]
    [Google Scholar]
  186. Zhilina TN, Zavarzin GA, Rainey FA, Pikuta EN, Osipov GA et al. Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium. Int J Syst Bacteriol 1997; 47:144–149 [View Article]
    [Google Scholar]
  187. Sorokin DY, Tourova TP, Mußmann M, Muyzer G. Dethiobacter alkaliphilus gen. nov. sp. nov., and Desulfurivibrio alkaliphilus gen. nov. sp. nov.: two novel representatives of reductive sulfur cycle from soda lakes. Extremophiles 2008; 12:431–439 [View Article]
    [Google Scholar]
  188. Sorokin DY, Tourova TP, Abbas B, Suhacheva MV, Muyzer G. Desulfonatronovibrio halophilus sp. nov., a novel moderately halophilic sulfate-reducing bacterium from hypersaline chloride–sulfate lakes in central Asia. Extremophiles 2012; 16:411–417 [View Article]
    [Google Scholar]
  189. Watanabe M, Kojima H, Fukui M. Desulfoplanes formicivorans gen. nov., sp. nov., a novel sulfate-reducing bacterium isolated from a blackish meromictic lake, and emended description of the family Desulfomicrobiaceae. Int J Syst Evol Microbiol 2015; 65:1902–1907 [View Article]
    [Google Scholar]
  190. Kuever J, Rainey FA, Order WF II. Desulfovibrionales ord. nov. In Brenner D, Krieg NR, Staley J, Garrity G. (editors) Bergey’s Manual of Systematic Bacteriology, Second edition, vol 2 (The Proteobacteria), Part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) New York: Springer, New York; 2005 pp 925–926
    [Google Scholar]
  191. Janssen PH, Schuhmann A, Bak F, Liesack W. Disproportionation of inorganic sulfur compounds by the sulfate-reducing bacterium Desulfocapsa thiozymogenes gen. nov., sp. nov. Arch Microbiol 1996; 166:184–192 [View Article]
    [Google Scholar]
  192. Isaksen MF, Teske A. Desulforhopalus vacuolatus gen. nov., sp. nov., a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary. Arch Microbiol 1996; 166:160–168 [View Article]
    [Google Scholar]
  193. Knoblauch C, Sahm K, Jørgensen BB. Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov. Int J Syst Evol Microbiol 1999; 49:1631–1643 [View Article]
    [Google Scholar]
  194. Suzuki D, Ueki A, Amaishi A, Ueki K. Desulfopila aestuarii gen. nov., sp. nov., a Gram-negative, rod-like, sulfate-reducing bacterium isolated from an estuarine sediment in Japan. Int J Syst Evol Microbiol 2007; 57:520–526 [View Article]
    [Google Scholar]
  195. Friedrich M, Springer N, Ludwig W, Schink B. Phylogenetic positions of Desulfofustis glycolicus gen. nov., sp. nov. and Syntrophobotulus glycolicus gen. nov., sp. nov., two new strict anaerobes growing with glycolic acid. Int J Syst Bacteriol 1996; 46:1065–1069 [View Article]
    [Google Scholar]
  196. Kuever J, Rainey F, Widdel F. Family II. Desulfobulbaceae fam. nov. In Brenner D, Kreig N, Staley J, Garrity G. (editors) Bergey’s Manual of Systematic Bacteriology, Second edition, vol 2 (The Proteobacteria), Part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) 988 New York: Springer, New York; 2005
    [Google Scholar]
  197. Moussard H, L'Haridon S, Tindall BJ, Banta A, Schumann P et al. Thermodesulfatator indicus gen. nov., sp. nov., a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 2004; 54:227–233 [View Article]
    [Google Scholar]
  198. Hatchikian E, Ollivier B, Garcia J, Order I. Thermodesulfobacteriales ord. nov. In Boone D, Castenholz R, Garrity G. (editors) Bergey’s Manual of Systematic Bacteriology, second edition, vol 1 (The Archaea and the deeply branching and phototrophic Bacteria) New York: Springer-Verlag; 2001 pp 389–390
    [Google Scholar]
  199. Slobodkin AI, Reysenbach A-L, Slobodkina GB, Kolganova TV, Kostrikina NA et al. Dissulfuribacter thermophilus gen. nov., sp. nov., a thermophilic, autotrophic, sulfur-disproportionating, deeply branching deltaproteobacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 2013; 63:1967–1971 [View Article]
    [Google Scholar]
  200. Beeder J, Torsvik T, Lien T. Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch Microbiol 1995; 164:331–336 [View Article]
    [Google Scholar]
  201. Kuever J, Rainey F, Widdel F. Order VI. Syntrophobacterales ord. nov. In Brenner D, Kreig N, Staley J, Garrity G. (editors) Bergey’s Manual of Systematic Bacteriology, Second edition, vol 2 (The Proteobacteria), Part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) New York: Springer, New York; 2005 p 1021
    [Google Scholar]
  202. Ikeda-Ohtsubo W, Strassert JFH, Köhler T, Mikaelyan A, Gregor I et al. Candidatus Adiutrix intracellularis’, an endosymbiont of termite gut flagellates, is the first representative of a deep-branching clade of Deltaproteobacteria and a putative homoacetogen. Environ Microbiol 2016; 18:2548–2564 [View Article]
    [Google Scholar]
  203. Kuever J, Rainey FA, Widdel F. Order IV. Desulfarcales ord. nov. In Brenner D, Krieg NR, Staley J, Garrity G. (editors) Bergey’s Manual of Systematic Bacteriology, Second edition, vol 2 (The Proteobacteria), Part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) 1003 New York: Springer, New York; 2005
    [Google Scholar]
  204. Oude Elferink SJWH, Akkermans-van Vliet WM, Bogte JJ, Stams AJM. Desulfobacca acetoxidans gen. nov., sp. nov., a novel acetate-degrading sulfate reducer isolated from sulfidogenic granular sludge. Int J Syst Evol Microbiol 1999; 49:345–350 [View Article]
    [Google Scholar]
  205. Liu Y, Balkwill DL, Henry CA, Drake GR, Boone DR. Characterization of the anaerobic propionate- degrading syntrophs Smithella propionica. Int J Syst Bacteriol 1999; 49:545–556
    [Google Scholar]
  206. Mountfort DO, Brulla WJ, Krumholz LR, Bryant MP. Syntrophus buswellii gen. nov., sp. nov.: a benzoate catabolizer from methanogenic ecosystems. Int J Syst Bacteriol 1984; 34:216–217 [View Article]
    [Google Scholar]
  207. Kuever J, Rainey FA, Widdel F. Family II. Syntrophaceae fam. nov. In Brenner D, Krieg NR, Staley J, Garrity G. (editors) Bergey’s Manual of Systematic Bacteriology, Second edition, vol 2 (The Proteobacteria), Part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) New York: Springer, New York; 2005 p 1033
    [Google Scholar]
  208. Qiu Y-L, Hanada S, Ohashi A, Harada H, Kamagata Y et al. Syntrophorhabdus aromaticivorans gen. nov., sp. nov., the first cultured anaerobe capable of degrading phenol to acetate in obligate syntrophic associations with a hydrogenotrophic methanogen. Appl Environ Microbiol 2008; 74:2051–2058 [View Article]
    [Google Scholar]
  209. DeWeerd K, Mandelco L, Tanner R, Woese C, Suflita J. Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch Microbiol 1990; 154:23–30 [View Article]
    [Google Scholar]
  210. Finster K, Bak F, Pfennig N. Desulfuromonas acetexigens sp. nov., a dissimilatory sulfur-reducing eubacterium from anoxic freshwater sediments. Arch Microbiol 1994; 161:328–332 [View Article]
    [Google Scholar]
  211. Krumholz LR. Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors. Int J Syst Bacteriol 1997; 47:1262–1263 [View Article]
    [Google Scholar]
  212. Sung Y, Ritalahti KM, Sanford RA, Urbance JW, Flynn SJ et al. Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov. Appl Environ Microbiol 2003; 69:2964–2974 [View Article][PubMed]
    [Google Scholar]
  213. Finster K, Bak F, Pfennig N. Desulfuromonas acetexigens sp. nov. In Validation of publication of new names and new combinations previously effectively published outside the IJSB. List no. 61. Int J Syst Bacteriol 1997; 47:601–602
    [Google Scholar]
  214. Euzeby JP. Validation List no. 129. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2009; 59:2129–2130
    [Google Scholar]
  215. Badalamenti JP, Summers ZM, Chan CH, Gralnick JA, Bond DR. Isolation and genomic characterization of ‘Desulfuromonas soudanensis WTL’, a metal- and electrode-respiring bacterium from anoxic deep subsurface brine. Front Microbiol 2016; 7:913 [View Article]
    [Google Scholar]
  216. Zavarzina DG, Kolganova TV, Bulygina ES, Kostrikina NA, Turova TP et al. [Geoalkalibacter ferrihydriticus gen. nov., sp. nov., the first alkaliphilic representative of the family Geobacteraceae, isolated from a soda lake]. Mikrobiologiia 2006; 75:673–682 [View Article][PubMed]
    [Google Scholar]
  217. Greene AC, Patel BKC, Yacob S. Geoalkalibacter subterraneus sp. nov., an anaerobic Fe(III)- and Mn(IV)-reducing bacterium from a petroleum reservoir, and emended descriptions of the family Desulfuromonadaceae and the genus Geoalkalibacter. Int J Syst Evol Microbiol 2009; 59:781–785 [View Article][PubMed]
    [Google Scholar]
  218. Kashefi K, Holmes DE, Baross JA, Lovley DR. Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from the "Bag City" hydrothermal vent. Appl Environ Microbiol 2003; 69:2985–2993
    [Google Scholar]
  219. Schink B, Stieb M. Fermentative degradation of polyethylene glycol by a strictly anaerobic, Gram-negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov. Appl Environ Microbiol 1983; 45:1905–1913 [View Article][PubMed]
    [Google Scholar]
  220. Schink B, Stieb M. Pelobacter venetianus In Validation of publication of new names and new combinations previously effectively published outside the IJSB. List no 13. Int J Syst Bacteriol 1984; 34:91–92
    [Google Scholar]
  221. Finster K, Coates JD, Liesack W, Pfennig N. Desulfuromonas thiophila sp. nov., a new obligately sulfur-reducing bacterium from anoxic freshwater sediment. Int J Syst Bacteriol 1997; 47:754–758 [View Article][PubMed]
    [Google Scholar]
  222. Pfennig N, Biebl H. Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol 1976; 110:3–12 [View Article][PubMed]
    [Google Scholar]
  223. Kuever J, Rainey F, Widdel F, Order V. Desulfuromonales ord. nov. In Brenner D, Kreig N, Staley J, Garrity G. (editors) Bergey’s Manual of Systematic Bacteriology, Second edition, vol 2 (The Proteobacteria), Part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) New York: Springer, New York; 2005 pp 1005–1006
    [Google Scholar]
  224. Kuever J, Rainey FA, Widdel F, Family I. Desulfuromonaceae fam. nov. In Brenner D, Krieg NR, Staley J, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, Second edition, vol 2 (The Proteobacteria), Part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) 1006 New York: Springer, New York; 2005
    [Google Scholar]
  225. Shelobolina ES, Vrionis HA, Findlay RH, Lovley DR. Geobacter uraniireducens sp. nov., isolated from subsurface sediment undergoing uranium bioremediation. Int J Syst Evol Microbiol 2008; 58:1075–1078 [View Article][PubMed]
    [Google Scholar]
  226. Prakash O, Gihring TM, Dalton DD, Chin K-J, Green SJ et al. Geobacter daltonii sp. nov., an Fe(III)- and uranium(VI)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination. Int J Syst Evol Microbiol 2010; 60:546–553 [View Article][PubMed]
    [Google Scholar]
  227. Kunapuli U, Jahn MK, Lueders T, Geyer R, Heipieper HJ et al. Desulfitobacterium aromaticivorans sp. nov. and Geobacter toluenoxydans sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons. Int J Syst Evol Microbiol 2010; 60:686–695 [View Article][PubMed]
    [Google Scholar]
  228. Straub KL, Buchholz-Cleven BE. Geobacter bremensis sp. nov. and Geobacter pelophilus sp. nov., two dissimilatory ferric-iron-reducing bacteria. Int J Syst Evol Microbiol 2001; 51:1805–1808 [View Article][PubMed]
    [Google Scholar]
  229. Nevin KP, Holmes DE, Woodard TL, Hinlein ES, Ostendorf DW et al. Geobacter bemidjiensis sp. nov. and Geobacter psychrophilus sp. nov., two novel Fe(III)-reducing subsurface isolates. Int J Syst Evol Microbiol 2005; 55:1667–1674 [View Article][PubMed]
    [Google Scholar]
  230. Euzeby JP. Validation List no. 129. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2009; 59:2129–2130
    [Google Scholar]
  231. Sung Y, Fletcher KE, Ritalahti KM, Apkarian RP, Ramos-Hernández N et al. Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl Environ Microbiol 2006; 72:2775–2782 [View Article][PubMed]
    [Google Scholar]
  232. De Wever H, Cole JR, Fettig MR, Hogan DA, Tiedje JM. Reductive dehalogenation of trichloroacetic acid by Trichlorobacter thiogenes gen. nov., sp. nov. Appl Environ Microbiol 2000; 66:2297–2301 [View Article][PubMed]
    [Google Scholar]
  233. Nevin KP, Holmes DE, Woodard TL, Covalla SF, Lovley DR. Reclassification of Trichlorobacter thiogenes as Geobacter thiogenes comb. nov. Int J Syst Evol Microbiol 2007; 57:463–466 [View Article][PubMed]
    [Google Scholar]
  234. Coates JD, Bhupathiraju VK, Achenbach LA, Mclnerney MJ, Lovley DR. Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe(III)-reducers. Int J Syst Evol Microbiol 2001; 51:581–588 [View Article][PubMed]
    [Google Scholar]
  235. Slobodkina GB, Reysenbach A-L, Panteleeva AN, Kostrikina NA, Wagner ID et al. Deferrisoma camini gen. nov., sp. nov., a moderately thermophilic, dissimilatory iron(III)-reducing bacterium from a deep-sea hydrothermal vent that forms a distinct phylogenetic branch in the Deltaproteobacteria. Int J Syst Evol Microbiol 2012; 62:2463–2468 [View Article][PubMed]
    [Google Scholar]
  236. Fudou R, Jojima Y, Iizuka T, Yamanaka S. Haliangium ochraceum gen. nov., sp. nov. and Haliangium tepidum sp. nov.: novel moderately halophilic myxobacteria isolated from coastal saline environments. J Gen Appl Microbiol 2002; 48:109–115 [View Article][PubMed]
    [Google Scholar]
  237. Reichenbach H. Family IV. Nannocystaceae fam. nov. In Brenner D, Kreig N, Staley J, Garrity G. (editors) Bergey’s Manual of Systematic Bacteriology, second edition, vol 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) New York: Springer, New York; 2005 pp 1136–1137
    [Google Scholar]
  238. Jahn E. Beiträge Zur Botanischen Protistologie. I. die Polyangiden, Verlag von Gebruder Borntraeger. Leipzig 1924; 75:
    [Google Scholar]
  239. Reichenbach H. Polyangiaceae. In Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J et al. (editors) In Bergey’s Manual of Systematics of Archaea and Bacteria 2015
    [Google Scholar]
  240. Mohr KI, Garcia RO, Gerth K, Irschik H, Müller R. Sandaracinus amylolyticus gen. nov., sp. nov., a starch-degrading soil myxobacterium, and description of Sandaracinaceae fam. nov. Int J Syst Evol Microbiol 2012; 62:1191–1198 [View Article][PubMed]
    [Google Scholar]
  241. Tchan Y, Pochon J, Prevot A. Etude de systématique bactérienne. VIII. Essai de classification des Cytophaga. Ann l’Institut Pasteur 1948; 74:394–400
    [Google Scholar]
  242. Garrity GM, Labeda DP, Oren A. Judicial Commission of the International Committee on Systematics of Prokaryotes XIIth International (IUMS) Congress of Bacteriology and Applied Microbiology. Int J Syst Evol Microbiol 2011; 61:2775–2780 [View Article]
    [Google Scholar]
  243. Koval SF, Hynes SH, Flannagan RS, Pasternak Z, Davidov Y et al. Bdellovibrio exovorus sp. nov., a novel predator of Caulobacter crescentus. Int J Syst Evol Microbiol 2013; 63:146–151 [View Article][PubMed]
    [Google Scholar]
  244. Garrity G, Bell J, Lilburn T. Family I. Bdellovibrionaceae fam. nov. In Brenner D, Kreig N, Staley J, Garrity G. (editors) Bergey’s Manual of Systematic Bacteriology, second edition, vol 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) New York: Springer, New York; 2005 pp 1040–1041
    [Google Scholar]
  245. Garrity G, Bell J, Lilburn T. Order VII. Bdellovibrionales ord. nov. In Brenner D, Kreig N, Staley J, Garrity G. (editors) Bergey’s Manual of Systematic Bacteriology, second edition, vol 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) New York: Springer, New York; 2005 p 1040
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004213
Loading
/content/journal/ijsem/10.1099/ijsem.0.004213
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error