1887

Abstract

A Gram-stain-negative, rod-shaped, facultative anaerobic bacterium, designated strain 3539, was isolated from coastal sediment of Weihai, PR China. Optimal growth occurred at 28 °C, pH 7.5–8.0 and in the presence of 3.0 % (w/v) NaCl. Results of phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 3539 formed a robust clade with members of the genus and was closely related to JCM 16154, F2 and sw153 with 97.7, 96.2 and 95.4 % sequence similarity, respectively. The average amino acid identity, percentage of conserved proteins, average nucleotide identity and digital DNA–DNA hybridization values between strain 3539 and JCM 16154 were 64.9, 68.3, 72.8 and 18.9 %, respectively. The genomic DNA G+C content of strain 3539 was 42.0 mol%. The dominant respiratory quinone was ubiquinone-8, and the major fatty acids were iso-C and summed feature 3 (C ω7/C ω6). The polar lipids of strain 3539 consisted of phosphatidyldimethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, one unidentified aminophospholipid, one unidentified lipid and three unidentified phospholipids. Based on the combination of phylogenetic, phenotypic and chemotaxonomic data, strain 3539 is considered to represent a novel species within the genus in he family , for which the name sp. nov. is proposed. The type strain of the new species is 3539 (=KCTC 72414=MCCC 1H00388).

Funding
This study was supported by the:
  • Zong-Jun Du , National Natural Science Foundation of China , (Award 31770002)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004210
2020-05-11
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3528.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004210&mimeType=html&fmt=ahah

References

  1. Romanenko LA, Tanaka N, Frolova GM, Mikhailov VV. Marinicella litoralis gen. nov., sp. nov., a gammaproteobacterium isolated from coastal seawater. Int J Syst Evol Microbiol 2010; 60:1613–1619 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  2. Parte AC. LPSN – list of prokaryotic names with standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [CrossRef]
    [Google Scholar]
  3. Wang X-Q, Li C-M, Dunlap CA, Rooney AP, Du Z-J. Marinicella sediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2018; 68:2335–2339 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  4. Wang Y, Liu Y, Zhang Z, Zheng Y, Zhang X-H. Marinicella pacifica sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2016; 66:2313–2318 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  5. Liu Q-Q, Wang Y, Li J, Du Z-J, Chen G-J. Saccharicrinis carchari sp. nov., isolated from a shark, and emended descriptions of the genus Saccharicrinis and Saccharicrinis fermentans . Int J Syst Evol Microbiol 2014; 64:2204–2209 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  6. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20:265–272 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  7. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  8. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  10. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  11. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  12. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  13. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  14. Tindall BJ, Sikorski J, Smibert RM, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM. (editors) Methods for General and Molecular Microbiology Washington, DC: ASM Press; 2007 pp 330–393
    [Google Scholar]
  15. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50 Pt 5:1861–1868 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  16. Cowan ST, Steel KJ. Bacterial characters and characterization. In Cambridge STC. editor Cowan and Steel’s Manual for the Identification of Medical Bacteria Cambridge, UK: Cambridge Uni- versity Press; 1974
    [Google Scholar]
  17. Dong X, Cai M. Determination of biochemical characteristics. In Dong XZ, Cai MY. (editors) Manual for the Systematic Identification of General Bacteria Beijing: Science Press; 2001 pp 370–398
    [Google Scholar]
  18. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  19. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [CrossRef]
    [Google Scholar]
  20. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [CrossRef]
    [Google Scholar]
  21. Tindall BJ, Sikorski J, Smibert RM, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM. (editors) Methods for General and Molecular Microbiology Washington, DC: ASM Press; 2007 pp 330–393
    [Google Scholar]
  22. Fang D-B, Han J-R, Liu Y, Du Z-J. Seonamhaeicola marinus sp. nov., isolated from marine algae. Int J Syst Evol Microbiol 2017; 67:4857–4861 [CrossRef][PubMed][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004210
Loading
/content/journal/ijsem/10.1099/ijsem.0.004210
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error