1887

Abstract

A novel Gram-staining-negative, spiral-shaped bacterium, designated strain 64-1, was isolated from oil reservoir water collected from Liaohe oilfield, north-eastern China. Growth occurred at 15–55 °C and pH 6.0–10.0. The sole respiratory quinone was Q-10. The predominant cellular fatty acids were summed feature 8 (C 7 /C 6), C and C cyclo 8. The polar lipids consisted of phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine (PC), an unidentified aminophospholipid (UAPL), an unidentified aminolipid (UAL) and two unidentified polar lipids (UPL). The genomic DNA G+C content of strain 64-1 was 64.5 mol%. Strain 64-1 shared the highest 16S rRNA gene sequence similarities with JA145 (92.0 %) and 26-4b1 (91.8 %). In the phylogenetic trees, the strain constituted a sub-cluster within the family . Based on the results of morphological, physiological, biochemical and phylogenetic analysis, strain 64-1 represents a new species of a novel genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain is 64-1 (=CGMCC 1.16798=LMG 31399).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award Grant No. 41977198)
    • Principle Award Recipient: Lei Wang
  • National Science and Technology Major Project (Award 2016ZX05040002-005-001)
  • Methodological research and application of oil field ecological profit and loss assessment (Award 2016E-1205)
    • Principle Award Recipient: Lei Wang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004200
2020-05-05
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3468.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004200&mimeType=html&fmt=ahah

References

  1. Pfennig N, Trüper HG. Higher taxa of the phototrophic bacteria. Int J Syst Bacteriol 1971; 21:17–18 [View Article]
    [Google Scholar]
  2. Garrity GM, Bell JA, Lilburn T. Class I. Alphaproteobacteria class. nov. In Brenner DJ, Krieg NR, Staley JT. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. NewYork: Springer; 2005 pp 1–574
    [Google Scholar]
  3. Mack EE, Mandelco L, Woese C, Madigan M. Rhodospirillum sodomense, sp. nov., a dead sea Rhodospirillum species. Arch Microbiol 1993; 160:363–371 [View Article]
    [Google Scholar]
  4. Kawasaki H, Hoshino Y, Kuraishi H, Yamasato K. Rhodocista centenaria gen. nov., sp. nov., a cyst-forming anoxygenic photosynthetic bacterium and its phylogenetic position in the Proteobacteria alpha group. J Gen Appl Microbiol 1992; 38:541–551 [View Article]
    [Google Scholar]
  5. Nissen H, Dundas ID. Rhodospirillum salinarum sp. nov., a halophilic photosynthetic bacterium isolated from a Portuguese saltern. Arch Microbiol 1984; 138:251–256 [View Article]
    [Google Scholar]
  6. Guyoneaud R, Mouné S, Eatock C, Bothorel V, Hirschler-Réa A et al. Characterization of three spiral-shaped purple nonsulfur bacteria isolated from coastal lagoon sediments, saline sulfur springs, and microbial mats: emended description of the genus Roseospira and description of Roseospira marina sp. nov., Roseospira navarrensis sp. nov., and Roseospira thiosulfatophila sp. nov. Arch Microbiol 2002; 178:315–324 [View Article][PubMed][PubMed]
    [Google Scholar]
  7. Coenye T, Goris J, Spilker T, Vandamme P, LiPuma JJ. Characterization of unusual bacteria isolated from respiratory secretions of cystic fibrosis patients and description of Inquilinus limosus gen. nov., sp. nov. J Clin Microbiol 2002; 40:2062–2069 [View Article][PubMed][PubMed]
    [Google Scholar]
  8. Shi B-H, Arunpairojana V, Palakawong S, Yokota A. Tistrella mobilis gen nov, sp nov, a novel polyhydroxyalkanoate-producing bacterium belonging to alpha-Proteobacteria . J Gen Appl Microbiol 2002; 48:335–343 [View Article][PubMed][PubMed]
    [Google Scholar]
  9. Maszenan AM, Seviour RJ, Patel BKC, Janssen PH, Wanner J. Defluvicoccus vanus gen. nov., sp. nov., a novel Gram-negative coccus/coccobacillus in the 'Alphaproteobacteria' from activated sludge. Int J Syst Evol Microbiol 2005; 55:2105–2111 [View Article][PubMed][PubMed]
    [Google Scholar]
  10. Lai Q, Yuan J, Wu C, Shao Z. Oceanibaculum indicum gen. nov., sp. nov., isolated from deep seawater of the Indian Ocean. Int J Syst Evol Microbiol 2009; 59:1733–1737 [View Article][PubMed][PubMed]
    [Google Scholar]
  11. Dar Jean W, Huang S-P, Chen J-S, Shieh WY. Tagaea marina gen. nov., sp. nov., a marine bacterium isolated from shallow coastal water. Int J Syst Evol Microbiol 2016; 66:592–597 [View Article][PubMed][PubMed]
    [Google Scholar]
  12. Liu Y, Jin J-H, Liu Y-H, Zhou Y-G, Liu Z-P. Dongia mobilis gen. nov., sp. nov., a new member of the family Rhodospirillaceae isolated from a sequencing batch reactor for treatment of malachite green effluent. Int J Syst Evol Microbiol 2010; 60:2780–2785 [View Article][PubMed][PubMed]
    [Google Scholar]
  13. Choi DH, Hwang CY, Cho BC. Pelagibius litoralis gen. nov., sp. nov., a marine bacterium in the family Rhodospirillaceae isolated from coastal seawater. Int J Syst Evol Microbiol 2009; 59:818–823 [View Article][PubMed][PubMed]
    [Google Scholar]
  14. Infante-Dominguez C, Lawson PA, Johnson CN, Sánchez-Porro C, Ventosa A. Fodinicurvata halophila sp. nov., a moderately halophilic bacterium from a marine saltern. Int J Syst Evol Microbiol 2015; 65:766–771 [View Article][PubMed][PubMed]
    [Google Scholar]
  15. Park S, Park J-M, Kang C-H, Yoon J-H. Aestuariispira insulae gen. nov., sp. nov., a lipolytic bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2014; 64:1841–1846 [View Article][PubMed][PubMed]
    [Google Scholar]
  16. Wang Y-X, Liu J-H, Zhang X-X, Chen Y-G, Wang Z-G et al. Fodinicurvata sediminis gen. nov., sp. nov. and Fodinicurvata fenggangensis sp. nov., poly-beta-hydroxybutyrate-producing bacteria in the family Rhodospirillaceae . Int J Syst Evol Microbiol 2009; 59:2575–2581 [View Article][PubMed][PubMed]
    [Google Scholar]
  17. Ming H, Nie G-X, Jiang H-C, Yu T-T, Zhou E-M et al. Paenibacillus frigoriresistens sp. nov., a novel psychrotroph isolated from a peat bog in Heilongjiang, Northern China. Antonie van Leeuwenhoek 2012; 102:297–305 [View Article][PubMed][PubMed]
    [Google Scholar]
  18. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  19. Leifson E. Atlas of Bacterial Flagellation London: Academic Press; 1960
    [Google Scholar]
  20. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703–704 [View Article][PubMed][PubMed]
    [Google Scholar]
  21. Chen L, Chen W-F, Xu Z-L, Li W, Zhang X-Y et al. Sphingomonas oleivorans sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2018; 68:3720–3725 [View Article][PubMed][PubMed]
    [Google Scholar]
  22. Al-Awadhi H, Al-Mailem D, Dashti N, Khanafer M, Radwan S. Indigenous hydrocarbon-utilizing bacterioflora in oil-polluted habitats in Kuwait, two decades after the greatest man-made oil spill. Arch Microbiol 2012; 194:689–705 [View Article][PubMed][PubMed]
    [Google Scholar]
  23. Poly F, Monrozier LJ, Bally R. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 2001; 152:95–103 [View Article][PubMed][PubMed]
    [Google Scholar]
  24. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed][PubMed]
    [Google Scholar]
  25. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36 [View Article]
    [Google Scholar]
  26. Rong C, Huang Y, Zhang W, Jiang W, Li Y et al. Ferrous iron transport protein B gene (feoB1) plays an accessory role in magnetosome formation in Magnetospirillum gryphiswaldense strain MSR-1. Res Microbiol 2008; 159:530–536 [View Article][PubMed][PubMed]
    [Google Scholar]
  27. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:16
    [Google Scholar]
  28. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  29. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  30. Liu Y-H, Guo J-W, Salam N, Li L, Zhang Y-G et al. Culturable endophytic bacteria associated with medicinal plant Ferula songorica: molecular phylogeny, distribution and screening for industrially important traits. 3 Biotech 2016; 6:209 [View Article][PubMed][PubMed]
    [Google Scholar]
  31. Li W-J, Xu P, Schumann P, Zhang Y-Q, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article][PubMed][PubMed]
    [Google Scholar]
  32. Imhoff JF, Pfennig N. Thioflavicoccus mobilis gen. nov., sp. nov., a novel purple sulfur bacterium with bacteriochlorophyll b. Int J Syst Evol Microbiol 2001; 51:105–110 [View Article][PubMed][PubMed]
    [Google Scholar]
  33. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed][PubMed]
    [Google Scholar]
  34. Chun J, Lee J-H, Jung Y, Kim M, Kim S et al. Eztaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 2007; 57:2259–2261 [View Article][PubMed][PubMed]
    [Google Scholar]
  35. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed][PubMed]
    [Google Scholar]
  36. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993; 10:1073–1095 [View Article][PubMed][PubMed]
    [Google Scholar]
  37. Felsenstein J. Phylogenies from restriction sites: a maximum-likelihood approach. Evolution 1992; 46:159–173 [View Article][PubMed][PubMed]
    [Google Scholar]
  38. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed][PubMed]
    [Google Scholar]
  39. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed][PubMed]
    [Google Scholar]
  40. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed][PubMed]
    [Google Scholar]
  41. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20:265–272 [View Article][PubMed][PubMed]
    [Google Scholar]
  42. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001; 29:2607–2618 [View Article][PubMed][PubMed]
    [Google Scholar]
  43. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955–964 [View Article][PubMed][PubMed]
    [Google Scholar]
  44. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article][PubMed][PubMed]
    [Google Scholar]
  45. Anil Kumar P, Srinivas TNR, Takaichi S, Maoka T, Sasikala C et al. Phaeospirillum chandramohanii sp. nov., a phototrophic alphaproteobacterium with carotenoid glycosides. Int J Syst Evol Microbiol 2009; 59:2089–2093 [View Article][PubMed][PubMed]
    [Google Scholar]
  46. Lakshmi KVNS, Sasikala C, Takaichi S, Ramana CV. Phaeospirillum oryzae sp. nov., a spheroplast-forming, phototrophic alphaproteobacterium from a paddy soil. Int J Syst Evol Microbiol 2011; 61:1656–1661 [View Article][PubMed][PubMed]
    [Google Scholar]
  47. Raj PS, Chakravarthy SK, Ramaprasad EVV, Sasikala C, Ramana CV. Phaeospirillum tilakii sp. nov., a phototrophic alphaproteobacterium isolated from aquatic sediments. Int J Syst Evol Microbiol 2012; 62:1069–1074 [View Article][PubMed][PubMed]
    [Google Scholar]
  48. Sizova MV, Panikov NS, Spiridonova EM, Slobodova NV, Tourova TP. Novel facultative anaerobic acidotolerant Telmatospirillum siberiense gen. nov. sp. nov. isolated from mesotrophic fen. Syst Appl Microbiol 2007; 30:213–220 [View Article][PubMed][PubMed]
    [Google Scholar]
  49. Lin S-Y, Liu Y-C, Hameed A, Hsu Y-H, Lai W-A et al. Azospirillum fermentarium sp. nov., a nitrogen-fixing species isolated from a fermenter. Int J Syst Evol Microbiol 2013; 63:3762–3768 [View Article][PubMed][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004200
Loading
/content/journal/ijsem/10.1099/ijsem.0.004200
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error