1887

Abstract

A novel bacterial strain, designated TOUT106, was isolated from the surface of a tomato. The cells were rod-shaped, Gram-negative, encapsulated and non-motile. Strain TOUT106 grows best at 28 °C and pH 7.0 and can tolerate up to 2 % (w/v) NaCl. Based on 16S rRNA gene phylogeny, strain TOUT106 was placed close to the clade, with close similarity to subsp. strain NCTC 8297 (98.42 %). Results of genome-based phylogenetic analysis revealed that strain TOUT106 is placed well in the clade, by forming a distinct branch with DSM25444, NCTC132727, 06D021 and SB6412. The genomic DNA G+C content of strain TOUT106 is 53.53 mol%. The average nucleotide identity values of TOUT106 were less than 86.5 % with closely related members of the family . The major fatty acids of strain TOUT106 were C, Ccyclo, C3OH/Ciso, C, Ccyclo ω8, Cω6/C ω7, C and Cω7/C ω6. Strain TOUT106 showed differences in physiological, phenotypic and protein profiles by MALDI-TOF MS compared to its closest relatives. Based on the results of phenotypic, chemotaxonomic and phylogenetic analyses, strain TOUT106 could be distinguished from the recognized species of the genus . It is suggested to represent a novel species of this genus, for which the name sp. nov. is proposed. The type strain is TOUT106 (=MCC 2901=KACC 21384=JCM 33718).

Funding
This study was supported by the:
  • Not Applicable , Department of Biotechnology, Government of India (IN) , (Award BT/Coord. II/01/03/2016)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004168
2020-04-24
2020-08-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3278.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004168&mimeType=html&fmt=ahah

References

  1. Grimont PAD, Grimont F. Klebsiella. Bergey's Manual of Systematics of Archaea and Bacteria 2015 pp 1–26
    [Google Scholar]
  2. Drancourt M, Bollet C, Carta A, Rousselier P. Phylogenetic analyses of Klebsiella species delineate Klebsiella and Raoultella gen. nov., with description of Raoultella ornithinolytica comb. nov., Raoultella terrigena comb. nov. and Raoultella planticola comb. nov. Int J Syst Evol Microbiol 2001; 51:925–932 [CrossRef]
    [Google Scholar]
  3. Saha R, Farrance CE, Verghese B, Hong S, Donofrio RS. Klebsiella michiganensis sp. nov., a new bacterium isolated from a tooth brush holder. Curr Microbiol 2013; 66:72–78 [CrossRef]
    [Google Scholar]
  4. Brisse S, Passet V, Grimont PAD. Description of Klebsiella quasipneumoniae sp. nov., isolated from human infections, with two subspecies, Klebsiella quasipneumoniae subsp. quasipneumoniae subsp. nov. and Klebsiella quasipneumoniae subsp. similipneumoniae subsp. nov., and demonstration that Klebsiella singaporensis is a junior heterotypic synonym of Klebsiella variicola . Int J Syst Evol Microbiol 2014; 64:3146–3152 [CrossRef]
    [Google Scholar]
  5. Rodrigues C, Passet V, Rakotondrasoa A, Diallo TA, Criscuolo A et al. Description of Klebsiella africanensis sp. nov., Klebsiella variicola subsp. tropicalensis subsp. nov. and Klebsiella variicola subsp. variicola subsp. nov. Res Microbiol 2019; 170:165–170 [CrossRef]
    [Google Scholar]
  6. Hu Y, Wei L, Feng Y, Xie Y, Zong Z. Klebsiella huaxiensis sp. nov., recovered from human urine. Int J Syst Evol Microbiol 2019; 69:333–336 [CrossRef]
    [Google Scholar]
  7. Passet V, Brisse S. Description of Klebsiella grimontii sp. nov. Int J Syst Evol Microbiol 2018; 68:377–381 [CrossRef]
    [Google Scholar]
  8. Merla C, Rodrigues C, Passet V, Corbella M, Thorpe HA et al. Description of Klebsiella spallanzanii sp. nov. and of Klebsiella pasteurii sp. nov. Front Microbiol 2019; 10:2360 [CrossRef]
    [Google Scholar]
  9. Xu J, Li W, Chen X, Zhou Y. Klebsiella alba sp. nov., a novel pesticide-tolerant bacterium from a heavily polluted environment. J Gen Appl Microbiol 2010; 56:241–247 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  10. Li X et al. Klebsiella singaporensis sp. nov., a novel isomaltulose-producing bacterium. Int J Syst Evol Microbiol 2004; 54:2131–2136 [CrossRef]
    [Google Scholar]
  11. Ferragut C, Izard D, Gavini F, Kersters K, De Ley J et al. Klebsiella trevisanii: a new species from water and soil. Int J Syst Bacteriol 1983; 33:133–142 [CrossRef]
    [Google Scholar]
  12. Lee J, Gordon DM. The genetic structure of enteric bacteria from Australian mammals. Microbiology 2015; 145:2673–2682
    [Google Scholar]
  13. Adachi K, Nakatani M, Mochida H. Isolation of an endophytic diazotroph, Klebsiella oxytoca, from sweet potato stems in Japan. Soil Sci Plant Nutr 2002; 48:889–895 [CrossRef]
    [Google Scholar]
  14. Martínez L, Caballero-Mellado J, Orozco J, Martínez-Romero E. Diazotrophic bacteria associated with banana (Musa spp.). Plant Soil 2003; 257:35–47 [CrossRef]
    [Google Scholar]
  15. Obeng FA, Gyasi PB, Olu-Taiwo M, Ayeh-kumi FP. Microbial assessment of tomatoes (Lycopersicon esculentum) sold at some central markets in ghana. Biomed Res Int 2018; 2018:1–7 [CrossRef]
    [Google Scholar]
  16. Afsah-Hejri L, Loo Y, Nillian E, Kuan C, Goh SG et al. Detection of Klebsiella pneumoniae in raw vegetables using Most Probable Number-Polymerase Chain Reaction (MPN-PCR). Int Food Res J 2012; 19:1757–1762
    [Google Scholar]
  17. Drive M, Creek W. Bacterial DNA isolation CTAB protocol bacterial genomic DNA isolation using CTAB. Doe Jt Genome Inst 2012; 4:
    [Google Scholar]
  18. Gulati A, Rahi P, Vyas P. Characterization of phosphate-solubilizing fluorescent pseudomonads from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas. Curr Microbiol 2008; 56:73–79 [CrossRef]
    [Google Scholar]
  19. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef]
    [Google Scholar]
  20. Chevreux B, Wetter T, Suhai S. Genome sequence assembly using trace signals and additional sequence information. Computer Science and Biology: Proceedings of the German Conference on Bioinformatics (GCB) 99 1999 pp 45–56
    [Google Scholar]
  21. S-I N, Kim YO, Yoon S-H, Ha S, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285
    [Google Scholar]
  22. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [CrossRef]
    [Google Scholar]
  23. Criscuolo A. A fast alignment-free bioinformatics procedure to infer accurate distance-based phylogenetic trees from genome assemblies. Res Ideas Outcomes 2019; 5:e36178 [CrossRef]
    [Google Scholar]
  24. Meier-Kolthoff JP, Göker M, Spröer C, Klenk H-P. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [CrossRef]
    [Google Scholar]
  25. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef]
    [Google Scholar]
  26. Goloboff PA, Farris JS, Nixon KC. TNT, a free program for phylogenetic analysis. Cladistics 2008; 24:774–786 [CrossRef]
    [Google Scholar]
  27. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [CrossRef]
    [Google Scholar]
  28. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75–15 [CrossRef]
    [Google Scholar]
  29. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T et al. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res 2014; 42:D581–D591 [CrossRef]
    [Google Scholar]
  30. MMC L, Wick RR, Wyres KL, Gorrie CL, Judd LM et al. Genetic diversity, mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in Klebsiella pneumoniae populations. Microb Genomics 2018; 4:1–14
    [Google Scholar]
  31. Sasser M. Technical note # 101 identification of bacteria by gas chromatography of cellular fatty acids. Stat 20011–6
    [Google Scholar]
  32. Rahi P, Prakash O, Shouche YS. Matrix-Assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) based microbial identifications: challenges and scopes for microbial ecologists. Front Microbiol 2016; 7:1359 [CrossRef]
    [Google Scholar]
  33. Rahi P, Kurli R, Khairnar M, Jagtap S, Pansare AN et al. Description of Lysinibacillus telephonicus sp. nov., isolated from the screen of a cellular phone. Int J Syst Evol Microbiol 2017; 67:2289–2295 [CrossRef]
    [Google Scholar]
  34. Performance Standards for Antimicrobial Susceptibility Testing Twenty-Second informational supplement; 2012
  35. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef]
    [Google Scholar]
  36. Hill S. Factors influencing the efficiency of nitrogen fixation in free-living bacteria. Ecol Bull 1978130–136
    [Google Scholar]
  37. Streicher SL, Shanmugam KT, Ausubel F, Morandi C, Goldberg RB. Regulation of nitrogen fixation in Klebsiella pneumoniae: evidence for a role of glutamine synthetase as a regulator of nitrogenase synthesis. J Bacteriol 1974; 120:815–821 [CrossRef]
    [Google Scholar]
  38. Shon AS, Bajwa RPS, Russo TA. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: A new and dangerous breed. Virulence 2013; 4:107–118
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004168
Loading
/content/journal/ijsem/10.1099/ijsem.0.004168
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error