1887

Abstract

Strain RA15 was isolated from the rhizosphere of the halophyte plant growing in the Odiel marshes (Huelva, Spain). RA15 cells were Gram stain-negative, non-spore-forming, aerobic rods and formed cream-coloured, opaque, mucoid, viscous, convex, irregular colonies with an undulate margin. Optimal growth conditions were observed on tryptic soy agar (TSA) plates supplemented with 2.5 % NaCl (w/v) at pH 7.0 and 28 °C, although it was able to grow at 4–32 °C and at pH values of 5.0–9.0. The NaCl tolerance range was from 0 to 15 %. The major respiratory quinone was Q8 but Q9 was also present. The most abundant fatty acids were summed feature 3 (C ω7 and/or C ω6), C 8 and C. The polar lipids profile comprised phosphatidylglycerol and phosphatidylethanolamine as the most abundant representatives. Phylogenetic analyses confirmed the well-supported affiliation of strain RA15 within the genus , close to the type strains of , and . Results of comparative phylogenetic and phenotypic studies between strain RA15 and its closest related species suggest that RA15 could be a new representative of the genus , for which the name sp. nov. is proposed. The type strain is RA15 (=CECT 9079=LMG 29860). The whole genome has 5.3 Mb and the G+C content is 40.4 mol%.

Funding
This study was supported by the:
  • Lorena Carro , Newcastle University , (Award Postdoctoral scholarship)
  • Salvadora Navarro-Torre , Instituto Nacional de Investigaciones Agropecuarias , (Award RTA 2012-0006-C03-03 project)
  • Salvadora Navarro-Torre , Junta de Andalucía , (Award P11-RNM-7274MO project)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004167
2020-04-28
2020-06-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3287.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004167&mimeType=html&fmt=ahah

References

  1. Gauthier G, Gauthier M, Christen R. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol 1995; 45:755–761 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  2. Ivanova EP, Flavier S, Christen R. Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 2004; 54:1773–1788 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  3. LPSN List of prokaryotes standing in nomenclature: genus, Pseudoalteromonas ; 2019
  4. Ivanova EP, Sawabe T, Lysenko AM, Gorshkova NM, Hayashi K et al. Pseudoalteromonas translucida sp. nov. and Pseudoalteromonas paragorgicola sp. nov., and emended description of the genus. Int J Syst Evol Microbiol 2002; 52:1759–1766 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  5. Bowman JP, McMeekin TA. Bergey’s Manual of Bacteriology. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) 2 New York: Springer; 2005 pp 467–478
  6. ZoBell CE, Upham HC. A list of marine bacteria including description of sixty new species. Bull Scripps Inst Oceanogr Univ Calif 1944; 20:638–645
    [Google Scholar]
  7. Zhang D-C, Liu Y-X, Huang H-J, Wu J. Pseudoalteromonas profundi sp. nov., isolated from a deep-sea seamount. Int J Syst Evol Microbiol 2016; 66:4416–4421 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  8. Hwang CY, Lee I, Hwang YJ, Yoon SJ, Lee WS et al. Pseudoalteromonas neustonica sp. nov., isolated from the sea surface microlayer of the Ross Sea (Antarctica), and emended description of the genus Pseudoalteromonas . Int J Syst Evol Microbiol 2016; 66:3377–3382 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  9. Ivanova EP, Gorshkova NM, Zhukova NV, Lysenko AM, Zelepuga EA et al. Characterization of Pseudoalteromonas distincta-like sea-water isolates and description of Pseudoalteromonas aliena sp. nov. Int J Syst Evol Microbiol 2004; 54:1431–1437 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  10. Oh Y-S, Park A-R, Lee J-K, Lim C-S, Yoo J-S et al. Pseudoalteromonas donghaensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2011; 61:351–355 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  11. Park S, Jung Y-T, Park D-S, Yoon J-H. Pseudoalteromonas aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66:2078–2083 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  12. Beurmann S, Ushijima B, Svoboda CM, Videau P, Smith AM et al. Pseudoalteromonas piratica sp. nov., a budding, prosthecate bacterium from diseased Montipora capitata, and emended description of the genus Pseudoalteromonas . Int J Syst Evol Microbiol 2017; 67:2683–2688 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  13. Egan S, Holmström C, Kjelleberg S. Pseudoalteromonas ulvae sp. nov., a bacterium with antifouling activities isolated from the surface of a marine alga. Int J Syst Evol Microbiol 2001; 51:1499–1504 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  14. Ivanova EP, Sawabe T, Lysenko AM, Gorshkova NM, Svetashev VI et al. Pseudoalteromonas ruthenica sp. nov., isolated from marine invertebrates. Int J Syst Evol Microbiol 2002; 52:235–240 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  15. Navarro-Torre S, Mateos-Naranjo E, Caviedes MA, Pajuelo E, Rodríguez-Llorente ID. Isolation of plant-growth-promoting and metal-resistant cultivable bacteria from Arthrocnemum macrostachyum in the Odiel marshes with potential use in phytoremediation. Mar Pollut Bull 2016; 110:133–142 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  16. Navarro-Torre S, Barcia-Piedras JM, Caviedes MA, Pajuelo E, Redondo-Gómez S et al. Bioaugmentation with bacteria selected from the microbiome enhances Arthrocnemum macrostachyum metal accumulation and tolerance. Mar Pollut Bull 2017; 117:340–347 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  17. Bangash A, Ahmed I, Abbas S, Kudo T, Shahzad A et al. Kushneria pakistanensis sp. nov., a novel moderately halophilic bacterium isolated from rhizosphere of a plant (Saccharum spontaneum) growing in salt mines of the Karak area in Pakistan. Antonie van Leeuwenhoek 2015; 107:991–1000 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  18. Zou Z, Wang G. Kushneria sinocarnis sp. nov., a moderately halophilic bacterium isolated from a Chinese traditional cured meat. Int J Syst Evol Microbiol 2010; 60:1881–1886 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  19. Halebian S, Harris B, Finegold SM, Rolfe RD. Rapid method that AIDS in distinguishing gram-positive from gram-negative anaerobic bacteria. J Clin Microbiol 1981; 13:444–448 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  20. Vaas LAI, Sikorski J, Michael V, Göker M, Klenk H-P. Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PLoS One 2012; 7:e34846 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  21. Vaas LAI, Sikorski J, Hofner B, Fiebig A, Buddruhs N et al. opm: an R package for analysing OmniLog(R) phenotype microarray data. Bioinformatics 2013; 29:1823–1824 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  22. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  23. Kroppenstedt RM, Goodfellow M. The family Thermonosporaceae: Actinocorallia, Actinomadura, Spirillispora y Thermomonospora . In Dworkin M, Falkow S, Schleifer KH, Stackebrandt E. (editors) Archaea y Bacteria: Firmicutes, Actinomycetes: The Prokariotes 3, 3st ed. Springer: New York; 2006 pp 682–724
    [Google Scholar]
  24. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [CrossRef]
    [Google Scholar]
  25. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [CrossRef]
    [Google Scholar]
  26. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:16
    [Google Scholar]
  27. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Göker M, Spröer C, Klenk H-P. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  30. Montero-Calasanz MC, Göker M, Pötter G, Rohde M, Spröer C et al. Geodermatophilus arenarius sp. nov., a xerophilic actinomycete isolated from Saharan desert sand in Chad. Extremophiles 2012; 16:903–909 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  31. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 2014; 15:R46 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  32. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM; 2013arXiv:1303.3997v2.
  33. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  34. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:7.5 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  35. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  36. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  37. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011; 8:785–786 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  38. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001; 305:567–580 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  39. Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 2007; 35:W52–W57 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  40. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  41. Bowman JP. Pseudoalteromonas prydzensis sp. nov., a psychrotrophic, halotolerant bacterium form Antarctic sea ice. Int J Syst Bacteriol 1998; 48 Pt 3:1037–1041 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  42. Romanenko LA, Zhukova NV, Lysenko AM, Mikhailov VV, Stackebrandt E. Assignment of 'Alteromonas marinoglutinosa' NCIMB 1770 to Pseudoalteromonas mariniglutinosa sp. nov., nom. rev., comb. nov. Int J Syst Evol Microbiol 2003; 53:1105–1109 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  43. Ying Y, Tian X-X, Wang J-J, Qu L-Y, Li J. Pseudoalteromonas fenneropenaei sp. nov., a marine bacterium isolated from sediment of a Fenneropenaeus chinensis pond. Int J Syst Evol Microbiol 2016; 66:2754–2759 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  44. Yan J, Wu Y-H, Meng F-X, Wang C-S, Xiong S-L et al. Pseudoalteromonas gelatinilytica sp. nov., isolated from surface seawater. Int J Syst Evol Microbiol 2016; 66:3538–3545 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  45. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  46. Montero-Calasanz MdelC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium . Int J Syst Evol Microbiol 2013; 63:4386–4395 [CrossRef][PubMed][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004167
Loading
/content/journal/ijsem/10.1099/ijsem.0.004167
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error