1887

Abstract

Two Gram-stain-negative, strictly aerobic, bright-yellow-pigmented and rod-shaped bacteria (strains 100069 and 100111) with a single polar flagellum were isolated from the rectal contents of plateau pika (). Based on the results of nearly full-length 16S rRNA gene sequence and phylogenetic analyses, strains 100069 and 100111 belong to the genus , and are closest to 4-12 (98.02 % similarity), B9 (97.8 %) and THG-MD21 (97.74 %). The DNA G+C contents of these two isolates were 68.30 mol% and 68.29 mol%, respectively. The highest average nucleotide identity (ANI) value between strain 100111 and its closely related species was 83.34 %, well below the threshold of 95–96 %. The major cellular fatty acids were iso-C, iso-C and iso-C ω9. Polar lipid content was dominated by diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified phospholipid and an unidentified lipid. Ubiquinone-8 (Q-8) was the predominant respiratory quinone. These two isolates grew optimally at 35–37 °C, pH 7.0–8.0 and with 1.0 % (w/v) NaCl. The results of ANI analysis and other characteristics obtained from our polyphasic study showed that strains 100069 and 100111 represent a novel species in genus , for which the name sp. nov. (type strain 100111=DSM 104077=CGMCC 1.16429) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004151
2020-04-20
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3186.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004151&mimeType=html&fmt=ahah

References

  1. Finkmann W, Altendorf K, Stackebrandt E, Lipski A. Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 2000; 50 Pt 1:273–282 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  2. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  3. Zhang G, Yang J, Lai X-H, Lu S, Jin D et al. Neisseria chenwenguii sp. nov. isolated from the rectal contents of a plateau pika (Ochotona curzoniae). Antonie Van Leeuwenhoek 2019; 112:1001–1010 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  4. Wang X, Yang J, Lu S, Lai X-H, Jin D et al. Nocardioides houyundeii sp. nov., isolated from Tibetan antelope faeces. Int J Syst Evol Microbiol 2018; 68:3874–3880 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  5. Meng X, Lu S, Wang Y, Lai X-H, Wen Y et al. Actinomyces vulturis sp. nov., isolated from Gyps himalayensis . Int J Syst Evol Microbiol 2017; 67:1720–1726 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  6. Niu L, Lu S, Hu S, Jin D, Lai X et al. Streptococcus halotolerans sp. nov. isolated from the respiratory tract of Marmota himalayana in Qinghai-Tibet Plateau of China. Int J Syst Evol Microbiol 2016; 66:4211–4217 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  7. Bai X, Lu S, Yang J, Jin D, Pu J et al. Precise fecal microbiome of the Herbivorous Tibetan antelope inhabiting high-altitude alpine plateau. Front Microbiol 2018; 9:2321 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  8. Meng X, Lu S, Yang J, Jin D, Wang X et al. Metataxonomics reveal vultures as a reservoir for Clostridium perfringens . Emerg Microbes Infect 2017; 6:e91–8 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  9. Meng X, Wang Y, Lu S, Lai X-H, Jin D et al. Actinomyces gaoshouyii sp. nov., isolated from plateau pika (Ochotona curzoniae). Int J Syst Evol Microbiol 2017; 67:3363–3368 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  10. Jin D, Chen C, Li L, Lu S, Li Z et al. Dynamics of fecal microbial communities in children with diarrhea of unknown etiology and genomic analysis of associated Streptococcus lutetiensis . BMC Microbiol 2013; 13:141 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  11. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  12. Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics 2002; Chapter 2:Unit 2.3 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  14. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  15. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  16. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  17. McCarthy A. Third generation DNA sequencing: Pacific biosciences' single molecule real time technology. Chem Biol 2010; 17:675–676 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  18. Berlin K, Koren S, Chin C-S, Drake JP, Landolin JM et al. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 2015; 33:623–630 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  19. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  20. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  21. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  22. Chen C, Zhang W, Zheng H, Lan R, Wang H et al. Minimum core genome sequence typing of bacterial pathogens: a unified approach for clinical and public health microbiology. J Clin Microbiol 2013; 51:2582–2591 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  23. Lin S-Y, Hameed A, Shahina M, Liu Y-C, Hsu Y-H et al. Description of Luteimonas pelagia sp. nov., isolated from marine sediment, and emended descriptions of Luteimonas aquatica, Luteimonas composti, Luteimonas mephitis, Lysobacter enzymogenes and Lysobacter panaciterrae . Int J Syst Evol Microbiol 2016; 66:645–651 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  24. Ngo HTT, Yin CS. Luteimonas terrae sp. nov., isolated from rhizosphere soil of Radix ophiopogonis. Int J Syst Evol Microbiol 2016; 66:1920–1925 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  25. Zhao G-Y, Shao F, Zhang M, Zhang X-J, Wang J-Y et al. Luteimonas rhizosphaerae sp. nov., isolated from the rhizosphere of Triticum aestivum L. Int J Syst Evol Microbiol 2018; 68:1197–1203 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  26. Cheng J, Zhang M-Y, Wang W-X, Manikprabhu D, Salam N et al. Luteimonas notoginsengisoli sp. nov., isolated from rhizosphere. Int J Syst Evol Microbiol 2016; 66:946–950 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  27. Fan X, Yu T, Li Z, Zhang X-H. Luteimonas abyssi sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2014; 64:668–674 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  28. Mu Y, Pan Y, Shi W, Liu L, Jiang Z et al. Luteimonas arsenica sp. nov., an arsenic-tolerant bacterium isolated from arsenic-contaminated soil. Int J Syst Evol Microbiol 2016; 66:2291–2296 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  29. Zhang S, Wang X, Yang J, Lu S, Lai XH et al. Luteimonas yindakuii sp. nov. isolated from the leaves of Dandelion (Taraxacum officinale) on the Qinghai-Tibetan Plateau. Int J Syst Evol Microbiol 2019
    [Google Scholar]
  30. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  31. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  32. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  33. Collins MD, Jones D. A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol 1981; 51:129–134 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  34. Wang X, Yang H-X, Zhang Y-K, Zhu S-J, Liu X-W et al. Luteimonas soli sp. nov., isolated from farmland soil. Int J Syst Evol Microbiol 2015; 65:4809–4815 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  35. Xin Y, Cao X, Wu P, Xue S. Luteimonas dalianensis sp. nov., an obligate marine bacterium isolated from seawater. J Microbiol 2014; 52:729–733 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  36. Liu Y, Yao S, Liu Y, Xu Y, Cheng C. Genome sequence of Luteimonas huabeiensis HB-2, a Novel Species of Luteimonas with High Oil Displacement Efficiency. Genome Announc 2014; 2:e00152-14 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  37. Roh SW, Kim K-H, Nam Y-D, Chang H-W, Kim M-S et al. Luteimonas aestuarii sp. nov., isolated from tidal flat sediment. J Microbiol 2008; 46:525–529 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  38. Verma A, Ojha AK, Kumari P, Sundharam SS, Mayilraj S et al. Luteimonas padinae sp. nov., an epiphytic bacterium isolated from an intertidal macroalga. Int J Syst Evol Microbiol 2016; 66:5444–5451 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  39. Zhang D-C, Liu H-C, Xin Y-H, Zhou Y-G, Schinner F et al. Luteimonas terricola sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 2010; 60:1581–1584 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  40. Romanenko LA, Tanaka N, Svetashev VI, Kurilenko VV, Mikhailov VV. Luteimonas vadosa sp. nov., isolated from seashore sediment. Int J Syst Evol Microbiol 2013; 63:1261–1266 [CrossRef][PubMed][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004151
Loading
/content/journal/ijsem/10.1099/ijsem.0.004151
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error