1887

Abstract

A Gram-stain-negative, aerobic, non-motile, non-gliding, yellow-pigmented and rod-shaped bacterial strain, designated 1KV19, was isolated from a surface sediment sample collected near a bay in the Arctic. Growth of strain 1KV19 occurred in 1–4 % (w/v) NaCl (optimum, 2 %), at 4–35 °C (optimum, 25–30 °C) and at pH 6.5–8.0 (optimum, pH 7.0–7.5). The phylogenetic trees based on the 16S rRNA gene sequences showed that strain 1KV19 was associated with the genus and had the highest 16S rRNA gene sequence similarity to 325-5 with 98.1 % similarity. Similarity values between strain 1KV19 and the type strains of other species were in the range 95.9–97.6 %. The average nucleotide identity and digital DNA–DNA hybridization values between strain 1KV19 and related species of the genus were 76.4–79.1 and 19.9–22.3 %, respectively. The major cellular fatty acids of strain 1KV19 were iso-C 3-OH, iso-C and iso-C H. The respiratory quinone was MK-6. The major polar lipids of strain 1KV19 were phosphatidylethanolamine, one unidentified aminolipid and two unidentified polar lipids. The phenotypic, genotypic and chemotaxonomic differences between strain 1KV19 and its phylogenetic relatives indicate that strain 1KV19 should be regarded as representing a novel species in the genus , for which the name sp. nov. is proposed. The type strain is 1KV19 (=KCTC 62595=MCCC 1H00307).

Funding
This study was supported by the:
  • Zong-Jun Du , Science & Technology Basic Resources Investigation Program of China , (Award 2017FY100300)
  • Zong-Jun Du , SOA Key Laboratory for Polar Science, Polar Research Institute of China , (Award KP201705)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004146
2020-04-17
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3154.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004146&mimeType=html&fmt=ahah

References

  1. Choi DH, Cho BC. Lutibacter litoralis gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from tidal flat sediment. Int J Syst Evol Microbiol 2006; 56:771–776 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  2. Park S, Kang S-J, Oh T-K, Yoon J-H. Lutibacter maritimus sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2010; 60:610–614 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  3. Lee S-Y, Lee M-H, Oh T-K, Yoon J-H. Lutibacter aestuarii sp. nov., isolated from a tidal flat sediment, and emended description of the genus Lutibacter Choi and Cho 2006. Int J Syst Evol Microbiol 2012; 62:420–424 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  4. Park SC, Choe HN, Hwang YM, Baik KS, Seong CN. Lutibacter agarilyticus sp. nov., a marine bacterium isolated from shallow coastal seawater. Int J Syst Evol Microbiol 2013; 63:2678–2683 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  5. Choi A, Yang S-J, Cho J-C. Lutibacter flavus sp. nov., a marine bacterium isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2013; 63:946–951 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  6. Sung H-R, Shin K-S, Ghim S-Y. Lutibacter oricola sp. nov., a marine bacterium isolated from seawater. Int J Syst Evol Microbiol 2015; 65:485–490 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  7. Nedashkovskaya OI, Van Trappen S, Zhukova NV, De Vos P. Lutibacter holmesii sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from the sea urchin Strongylocentrotus intermedius, and emended description of the genus Lutibacter . Int J Syst Evol Microbiol 2015; 65:3991–3996 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  8. Park S, Park J-M, Won S-M, Park D-S, Yoon J-H. Lutibacter crassostreae sp. nov., isolated from oyster. Int J Syst Evol Microbiol 2015; 65:2689–2695 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  9. Le Moine Bauer S, Roalkvam I, Steen IH, Dahle H. Lutibacter profundi sp. nov., isolated from a deep-sea hydrothermal system on the Arctic Mid-Ocean Ridge and emended description of the genus Lutibacter . Int J Syst Evol Microbiol 2016; 66:2671–2677 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  10. Sundararaman A, Lee S-S. Lutibacter oceani sp. nov., isolated from marine sediment in South Korea. Antonie Van Leeuwenhoek 2017; 110:45–51 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  11. Park S, Yoon SY, Ha M-J, Jung Y-T, Yoon J-H. Lutibacter litorisediminis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67:583–588 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  12. Mu D-S, Liang Q-Y, Wang X-M, Lu D-C, Shi M-J et al. Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing. Microbiome 2018; 6:230 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  13. Liu Q-Q, Wang Y, Li J, Du Z-J, Chen G-J. Saccharicrinis carchari sp. nov., isolated from a shark, and emended descriptions of the genus Saccharicrinis and Saccharicrinis fermentans . Int J Syst Evol Microbiol 2014; 64:2204–2209 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  14. Li R, Yu C, Li Y, Lam T-W, Yiu S-M et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 2009; 25:1966–1967 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  15. Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D et al. Toward an online repository of Standard Operating Procedures (SOPs) for (meta)genomic annotation. Omi A J Integr Biol 2008; 12:137–141 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  16. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44:D457–D462 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  17. Chen I-MA, Chu K, Palaniappan K, Pillay M, Ratner A et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res 2019; 47:D666–D677 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  18. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46:W95–W101 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  19. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  20. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  21. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  22. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  23. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  24. Fernández-Gómez B, Richter M, Schüler M, Pinhassi J, Acinas SG et al. Ecology of marine Bacteroidetes: a comparative genomics approach. Isme J 2013; 7:1026–1037 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  25. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  26. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  28. Fitch WM. Towards defining the course of evolution: minimal change for a specified tree topology. Syst Zool 1971; 20:406–416 [CrossRef]
    [Google Scholar]
  29. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  30. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  31. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  32. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  33. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  34. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  35. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  36. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  37. Smibert RM, Krieg NR. Phenotypic characterization. Methods for General and Molecular Bacteriology 1994 pp 607–654
    [Google Scholar]
  38. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  39. Dong XZ, Cai MY. Determination of biochemical characteristics. Manual for the Systematic Identification of General Bacteria Beijing: Science Press: 2001 pp 607–654
    [Google Scholar]
  40. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. Methods for General and Molecular Microbiology, 3rd ed. 2007 pp 330–393
    [Google Scholar]
  41. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–469 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004146
Loading
/content/journal/ijsem/10.1099/ijsem.0.004146
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error