1887

Abstract

A Gram-stain-positive, facultatively anaerobic and non-motile strain, designated SYSUP0004, was isolated from the tubers of Blume collected from Yunnan Province, PR China. The 16S rRNA gene sequence result showed that the strain SYSUP0004 shared low similarity (97.7 %) with the type strain of . SYSUP0004 grew at pH 6.0–9.0 (optimum, pH 8.0), temperature 4–30 °C (optimum, 28 °C) and could tolerate NaCl up to 4 % w/v (optimum in the absence of NaCl). The cell-wall peptidoglycan type was A4 with an interpeptide bridge -ornithine-glutamic acid. Cell-wall sugars were mannose, ribose, glucose, galactose and fucose. The menaquinone was MK-9(H). The major fatty acids were anteiso-C anteiso-C A, C and anteiso-C. The polar lipids of SYSUP0004 were diphosphatidylglycerol, unidentified phosphoglycolipid, phosphatidylinositol mannosides and unidentified glycolipid. The genomic DNA G+C content was 76.5 %. The average nucleotide identity values between SYSUP0004 and members of the genus were below the cut-off level (95–96 %) recommended as the ANI criterion for interspecies identity. Thus, based on the above results strain SYSUP0004 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain, SYSUP0004 (=KCTC 49025=CGMCC 1.16405).

Funding
This study was supported by the:
  • Yan-Qiong Li , The Science Foundation of Kunming Medical University Haiyuan college , (Award 2018HY008 and 2019HY003)
  • Yan-Qiong Li , Guangdong Province Science and Technology Innovation Strategy Special Fund , (Award 2018B020206001)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004133
2020-04-02
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3091.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004133&mimeType=html&fmt=ahah

References

  1. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM. Bergey’s Manual of Determinative Bacteriology Baltimore: Williams &Wilkins; 1923
    [Google Scholar]
  2. Shi Z, Luo G, Wang G. Cellulomonas carbonis sp. nov., isolated from coal mine soil. Int J Syst Evol Microbiol 2012; 62:2004–2010 [CrossRef][PubMed]
    [Google Scholar]
  3. Zhang L, Xi L, Qiu D, Song L, Dai X et al. Cellulomonas marina sp. nov., isolated from deep-sea water. Int J Syst Evol Microbiol 2013; 63:3014–3018 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  4. Zhang H, Li Y-Q, Xiao M, Fang B-Z, Alkhalifah DHM et al. Description of Paracoccus endophyticus sp. nov., isolated from Gastrodia elata Blume. Int J Syst Evol Microbiol 2019; 69:261–265 [CrossRef][PubMed]
    [Google Scholar]
  5. Li Y-Q, Narsing Rao MP, Zhang H, Guo Y-M, Dong Z-Y et al. Description of Sphingomonas mesophila sp. nov., isolated from Gastrodia elata Blume. Int J Syst Evol Microbiol 2019; 69:1030–1034 [CrossRef][PubMed]
    [Google Scholar]
  6. Qin S, Li J, Chen H-H, Zhao G-Z, Zhu W-Y et al. Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 2009; 75:6176–6186 [CrossRef][PubMed]
    [Google Scholar]
  7. Khieu T-N, Liu M-J, Nimaichand S, Quach N-T, Chu-Ky S et al. Characterization and evaluation of antimicrobial and cytotoxic effects of Streptomyces sp. HUST012 isolated from medicinal plant Dracaena cochinchinensis Lour. Front Microbiol 2015; 6:574 [CrossRef][PubMed]
    [Google Scholar]
  8. Li W-J, Xu P, Schumann P, Zhang Y-Q, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Evol Microbiol 2007; 57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  9. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  10. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  11. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [CrossRef]
    [Google Scholar]
  12. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  13. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  14. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  15. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  16. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  17. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  18. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703–704 [CrossRef][PubMed]
    [Google Scholar]
  19. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [CrossRef][PubMed]
    [Google Scholar]
  20. Lee C-M, Weon H-Y, Hong S-B, Jeon Y-A, Schumann P et al. Cellulomonas aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2008; 58:2925–2929 [CrossRef][PubMed]
    [Google Scholar]
  21. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [CrossRef]
    [Google Scholar]
  22. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20:435–443 [CrossRef]
    [Google Scholar]
  23. Tang S-K, Wang Y, Chen Y, Lou K, Cao L-L et al. Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella . Int J Syst Evol Microbiol 2009; 59:2025–2032 [CrossRef][PubMed]
    [Google Scholar]
  24. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  25. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [CrossRef]
    [Google Scholar]
  26. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: Microbial ID, Inc; 1990
    [Google Scholar]
  27. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [CrossRef]
    [Google Scholar]
  28. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [CrossRef]
    [Google Scholar]
  29. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  30. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955–964 [CrossRef][PubMed]
    [Google Scholar]
  31. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [CrossRef][PubMed]
    [Google Scholar]
  32. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics 2007; 23:673–679 [CrossRef][PubMed]
    [Google Scholar]
  33. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [CrossRef][PubMed]
    [Google Scholar]
  34. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004; 5:R12–2483 [CrossRef][PubMed]
    [Google Scholar]
  35. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  36. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004133
Loading
/content/journal/ijsem/10.1099/ijsem.0.004133
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error