1887

Abstract

Two independent strains of a species (ES3154-GLU and ES2714_GLU) were isolated from the oral cavity of northern elephant seals () that were admitted to The Marine Mammal Centre facilities in California, USA. The strains were isolated from oral swabs by cultivation in PPLO broth supplemented with serum, penicillin and colistin in anaerobic conditions. The strains were Gram-negative, pleomorphic, indole-, oxidase- and catalase-negative, non-spore-forming, non-motile rods/coccobacilli in short chains. The 16S rRNA gene sequence of these strains shared 94.42 % nucleotide similarity with AVG 2115 but demonstrated ≤86.00–92.50 % nucleotide similarity to the 16S rRNA genes of other species of the family . The genome was sequenced for strain ES3154-GLU. Average nucleotide identity values between strain ES3154-GLU and 15 type strain genomes from the family ranged from 66.74 % vs. to 73.35 % vs. . The whole genome phylogeny revealed that the novel species was most closely related to AVG 2115. This relationship was also confirmed by nucleotide similarity and multilocus phylogenetic analyses employing various housekeeping genes (partial 23S rRNA, , , , , , and genes). Chemotaxonomic and phenotypical features of strain ES3154-GLU were in congruence with closely related members of the family , represented by similar enzyme profiles and fatty acid patterns. MALDI-TOF MS analysis was capable to clearly discriminate strain ES3154-GLU from all currently described taxa of the family . Based on these data, we propose a novel species of the genus , for which the name sp. nov. is proposed with the type strain ES3154-GLU (=DSM 109740=CCUG 73653=ATCC TSD-189=NCTC 14411) and one representative strain ES2714_GLU. The G+C content is 26.82 %, genome size is 1 356 983 bp.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004127
2020-03-30
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3037.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004127&mimeType=html&fmt=ahah

References

  1. Eisenberg T, Glaeser SP, Blom J, Kämpfer P. Bergey's Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Inc; 2018
    [Google Scholar]
  2. Eribe ERK, Olsen I. Leptotrichia species in human infections II. J Oral Microbiol 2017; 9:1368848 [CrossRef][PubMed]
    [Google Scholar]
  3. Eisenberg T, Glaeser SP, Blom J, Kämpfer P. Proposal to reclassify Streptobacillus hongkongensis into a novel genus as Pseudostreptobacillus hongkongensis gen. nov., comb. nov. Int J Syst Evol Microbiol in press 2020; 65: [CrossRef][PubMed]
    [Google Scholar]
  4. Eisenberg T, Glaeser SP, Blom J, Kämpfer P. Proposal to reclassify Leptotrichia goodfellowii into a novel genus as Pseudoleptotrichia goodfellowii gen. nov., comb. nov. Int J Syst Evol Microbiol in press 2020
    [Google Scholar]
  5. Eribe ERK, Olsen I. Leptotrichia species in human infections. Anaerobe 2008; 14:131–137 [CrossRef][PubMed]
    [Google Scholar]
  6. Couturier MR, Slechta ES, Goulston C, Fisher MA, Hanson KE. Leptotrichia bacteremia in patients receiving high-dose chemotherapy. J Clin Microbiol 2012; 50:1228–1232 [CrossRef][PubMed]
    [Google Scholar]
  7. Schrimsher JM, McGuirk JP, Hinthorn DR. Leptotrichia trevisanii sepsis after bone marrow transplantation. Emerg Infect Dis 2013; 19:1690–1691 [CrossRef][PubMed]
    [Google Scholar]
  8. Smid MC, Dotters-Katz SK, Plongla R, Boggess KA. Leptotrichia buccalis: a novel cause of chorioamnionitis. Infect Dis Rep 2015; 7:5801 [CrossRef][PubMed]
    [Google Scholar]
  9. Eisenberg T, Glaeser SP, Ewers C, Semmler T, Drescher B et al. Caviibacter abscessus gen. nov., sp. nov., a member of the family Leptotrichiaceae isolated from guinea pigs (Cavia porcellus). Int J Syst Evol Microbiol 2016; 66:1652–1659 [CrossRef][PubMed]
    [Google Scholar]
  10. Eisenberg T, Kämpfer P, Ewers C, Semmler T, Glaeser SP et al. Oceanivirga salmonicida gen. nov., sp. nov., a member of the Leptotrichiaceae isolated from Atlantic salmon (Salmo salar). Int J Syst Evol Microbiol 2016; 66:2429–2437 [CrossRef][PubMed]
    [Google Scholar]
  11. Volokhov DV, Simonyan V, Davidson MK, Chizhikov VE. RNA polymerase beta subunit (rpoB) gene and the 16S-23S rRNA intergenic transcribed spacer region (ITS) as complementary molecular markers in addition to the 16S rRNA gene for phylogenetic analysis and identification of the species of the family Mycoplasmataceae . Mol Phylogenet Evol 2012; 62:515–528 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  12. Hammill MO. Earless seals: Phocidae . Encyclopedia of Marine Mammals, 2nd ed. 2009 pp 342–348
    [Google Scholar]
  13. NOAA 2007; Northern elephant seal (Mirounga angustirostris): California breeding stock. https://www.fisheries.noaa.gov/webdam/download/76004297
  14. Godoy-Vitorino F, Rodriguez-Hilario A, Alves AL, Gonçalves F, Cabrera-Colon B et al. The microbiome of a striped dolphin (Stenella coeruleoalba) stranded in Portugal. Res Microbiol 2017; 168:85–93 [CrossRef][PubMed]
    [Google Scholar]
  15. Bik EM, Costello EK, Switzer AD, Callahan BJ, Holmes SP et al. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nat Commun 2016; 7:10516 [CrossRef][PubMed]
    [Google Scholar]
  16. Apprill A, Miller CA, Moore MJ, Durban JW, Fearnbach H et al. Extensive core microbiome in drone-captured whale blow supports a framework for health monitoring. mSystems 2017; 2:e00119-17 [CrossRef][PubMed]
    [Google Scholar]
  17. Volokhov DV, Batac F, Gao Y, Miller M, Chizhikov VE. Mycoplasma enhydrae sp. nov. isolated from southern sea otters (Enhydra lutris nereis). Int J Syst Evol Microbiol 2019; 69:363–370 [CrossRef][PubMed]
    [Google Scholar]
  18. Harasawa R, Imada Y, Ito M, Koshimizu K, Cassell GH et al. Ureaplasma felinum sp. nov. and Ureaplasma cati sp. nov. isolated from the oral cavities of cats. Int J Syst Bacteriol 1990; 40:45–51 [CrossRef][PubMed]
    [Google Scholar]
  19. Talley LD. Salinity patterns in the Ocean. Encyclopedia of Global Environmental Change 2002 pp 629–640
    [Google Scholar]
  20. Emery WJ. Water types and water masses. Ocean Circulation 20031556–1567
    [Google Scholar]
  21. Choi YS, Kim Y, Yoon H-J, Baek KJ, Alam J et al. The presence of bacteria within tissue provides insights into the pathogenesis of oral lichen planus. Sci Rep 2016; 6:29186 [CrossRef][PubMed]
    [Google Scholar]
  22. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  23. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [CrossRef][PubMed]
    [Google Scholar]
  24. Ochman H, Elwyn S, Moran NA. Calibrating bacterial evolution. Proc Natl Acad Sci U S A 1999; 96:12638–12643 [CrossRef][PubMed]
    [Google Scholar]
  25. Mollet C, Drancourt M, Raoult D. rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol 1997; 26:1005–1011 [CrossRef][PubMed]
    [Google Scholar]
  26. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [CrossRef]
    [Google Scholar]
  27. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  28. Blom J, Glaeser SP, Juhre T, Kreis J, Hanel PH. EDGAR: a versatile tool for phylogenomics. Bergey's Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Inc; 2019
    [Google Scholar]
  29. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  30. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  31. Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 2007; 10:504–509 [CrossRef][PubMed]
    [Google Scholar]
  32. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  33. Palmer M, Venter SN, McTaggart AR, Coetzee MPA, Van Wyk S et al. The synergistic effect of concatenation in phylogenomics: the case in Pantoea . PeerJ 2019; 7:e6698 [CrossRef][PubMed]
    [Google Scholar]
  34. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  35. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  36. Shimodaira H, Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 1999; 16:1114–1116 [CrossRef]
    [Google Scholar]
  37. Medlar AJ, Törönen P, Holm L. AAI-profiler: fast proteome-wide exploratory analysis reveals taxonomic identity, misclassification and contamination. Nucleic Acids Res 2018; 46:W479–W485 [CrossRef][PubMed]
    [Google Scholar]
  38. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [CrossRef][PubMed]
    [Google Scholar]
  39. Blom J, Kreis J, Spänig S, Juhre T, Bertelli C et al. EDGAR 2.0: an enhanced software platform for comparative gene content analyses. Nucleic Acids Res 2016; 44:W22–W28 [CrossRef][PubMed]
    [Google Scholar]
  40. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012; 28:1647–1649 [CrossRef][PubMed]
    [Google Scholar]
  41. Furuno M, Kasukawa T, Saito R, Adachi J, Suzuki H et al. CDS annotation in full-length cDNA sequence. Genome Res 2003; 13:1478–1487 [CrossRef][PubMed]
    [Google Scholar]
  42. Xu L, Dong Z, Fang L, Luo Y, Wei Z et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 2019; 47:W52–W58 [CrossRef][PubMed]
    [Google Scholar]
  43. Gupta RS, Sethi M. Phylogeny and molecular signatures for the phylum Fusobacteria and its distinct subclades. Anaerobe 2014; 28:182–198 [CrossRef]
    [Google Scholar]
  44. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: a fast phage search tool. Nucleic Acids Res 2011; 39:W347–W352 [CrossRef][PubMed]
    [Google Scholar]
  45. Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 2007; 35:W52–W57 [CrossRef][PubMed]
    [Google Scholar]
  46. Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 1999; 27:573–580 [CrossRef][PubMed]
    [Google Scholar]
  47. Bertelli C, Laird MR, Williams KP, Lau BY et al. Simon Fraser University Research Computing Group IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 2017; 45:W30–W35 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  48. Cosentino S, Voldby Larsen M, Møller Aarestrup F, Lund O. PathogenFinder--distinguishing friend from foe using bacterial whole genome sequence data. PLoS One 2013; 8:e77302 [CrossRef][PubMed]
    [Google Scholar]
  49. Choo SW, Dutta A, Wong GJ, Wee WY, Ang MY et al. Comparative genomic analysis reveals a possible novel non-tuberculous Mycobacterium species with high pathogenic potential. PLoS One 2016; 11:e0150413 [CrossRef][PubMed]
    [Google Scholar]
  50. Collins MD, Hoyles L, Törnqvist E, von Essen R, Falsen E. Characterization of some strains from human clinical sources which resemble “Leptotrichia sanguinegens”: Description of Sneathia sanguinegens sp. nov., gen. nov. Syst Appl Microbiol 2001; 24:358–361 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  51. Eisenberg T, Nicklas W, Mauder N, Rau J, Contzen M et al. Phenotypic and genotypic characteristics of members of the genus Streptobacillus . PLoS One 2015; 10:e0134312 [CrossRef][PubMed]
    [Google Scholar]
  52. Volokhov DV, Amselle M, Bodeis-Jones S, Delmonte P, Zhang S et al. Neisseria zalophi sp. nov., isolated from oral cavity of California sea lions (Zalophus californianus). Arch Microbiol 2018; 200:819–828 [CrossRef][PubMed]
    [Google Scholar]
  53. Whittaker P, Keys CE, Brown EW, Fry FS. Differentiation of Enterobacter sakazakii from closely related Enterobacter and Citrobacter species using fatty acid profiles. J Agric Food Chem 2007; 55:4617–4623 [CrossRef][PubMed]
    [Google Scholar]
  54. Delmonte P, Kia A-RF, Hu Q, Rader JI. Review of methods for preparation and gas chromatographic separation of trans and cis reference fatty acids. J AOAC Int 2009; 92:1310–1326 [CrossRef][PubMed]
    [Google Scholar]
  55. Delmonte P, Fardin-Kia AR, Rader JI. Separation of fatty acid methyl esters by GC-online hydrogenation × GC. Anal Chem 2013; 85:1517–1524 [CrossRef][PubMed]
    [Google Scholar]
  56. Eisenberg T, Imaoka K, Kimura M, Glaeser SP, Ewers C et al. Streptobacillus ratti sp. nov., isolated from a black rat (Rattus rattus). Int J Syst Evol Microbiol 2016; 66:1620–1626 [CrossRef][PubMed]
    [Google Scholar]
  57. Eisenberg T, Glaeser SP, Ewers C, Semmler T, Nicklas W et al. Streptobacillus notomytis sp. nov., isolated from a spinifex hopping mouse (Notomys alexis Thomas, 1922), and emended description of Streptobacillus Levaditi et al. 1925, Eisenberg et al. 2015 emend. Int J Syst Evol Microbiol 2015; 65:4823–4829 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  58. Rau J, Eisenberg T, Peters M, Berger A, Kutzer P et al. Reliable differentiation of a non-toxigenic tox gene-bearing Corynebacterium ulcerans variant frequently isolated from game animals using MALDI-TOF MS. Vet Microbiol 2019; 237:108399 [CrossRef][PubMed]
    [Google Scholar]
  59. Rau J, Eisenberg T, Male A, Wind C, Lasch P et al. MALDI-UP – an Internet platform for the exchange of MALDI-TOF mass spectra. Aspects of food control and animal health 2016; 1:1–17
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004127
Loading
/content/journal/ijsem/10.1099/ijsem.0.004127
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error