1887

Abstract

A Gram-stain-negative, aerobic, yellow-pigmented, flexirubin-negative, rod-shaped and non-motile bacterial strain, PAMC 28998, was isolated from a surface sediment sample collected from the Canadian Beaufort Sea. Strain PAMC 28998 grew at 4–37 °C (optimum, 25 °C), at pH 7.0–9.0 (optimum, pH 7.5) and in the presence of 1.0–10.0 % (w/v) NaCl. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain PAMC 28998 belongs to the genus showing the highest sequence similarity (96.8 %) with JB01H24. The average nucleotide identity and genome-to-genome distance values between PAMC 28998 and the most closely related species ( JB01H24) were 74.1 and 18.5 %, respectively, indicating that strain PAMC 28998 is clearly distinguished from . The genomic DNA G+C content calculated from genome sequences was 39.8 %. The major fatty acids (>10 %) were iso-C (19.5 %), anteiso-C (18.0 %), iso-C (11.6 %) and summed feature 3 (C ω6 and/or Cω7; 11.4 %). The major polar lipids were phosphatidylethanolamine, aminoglycolipid, two unidentified aminolipids, three unidentified phospholipids and four unidentified lipids. The major respiratory quinone was MK-6. Based on the phylogenetic, genomic and phenotypic data presented here, strain PAMC 28998 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed with the strain PAMC 28998 (=KCCM 43316 =JCM 33514).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004122
2020-03-26
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2912.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004122&mimeType=html&fmt=ahah

References

  1. Li A-Z, Lin L-Z, Zhang M-X, Zhu H-H. Antarcticibacterium flavum gen. nov., sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2018; 68:254–259 [View Article]
    [Google Scholar]
  2. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article]
    [Google Scholar]
  3. Lee D-H, Kim J-H, Lee YM, Stadnitskaia A, Jin YK et al. Biogeochemical evidence of anaerobic methane oxidation on active submarine mud volcanoes on the continental slope of the Canadian Beaufort sea. Biogeosciences 2018; 15:7419–7433 [View Article]
    [Google Scholar]
  4. Lane DJ, Stackebrandt E, Goodfellow M. Nucleic Acid Techniques in Bacterial Systematics 1991 pp 115–175
    [Google Scholar]
  5. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  6. Jeon Y-S, Chung H, Park S, Hur I, Lee J-H et al. jPHYDIT: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 2005; 21:3171–3173 [View Article]
    [Google Scholar]
  7. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article]
    [Google Scholar]
  8. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  9. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article]
    [Google Scholar]
  10. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  11. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article][PubMed]
    [Google Scholar]
  12. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article]
    [Google Scholar]
  13. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article]
    [Google Scholar]
  14. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article]
    [Google Scholar]
  15. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  16. Lee YM, Jin YK, Shin SC. Complete genome sequence of Antarcticibacterium flavum JB01H24T from an Antarctic marine sediment. Mar Genom 2019; 100695:
    [Google Scholar]
  17. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  18. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article][PubMed]
    [Google Scholar]
  19. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  20. Rosselló-Mora R, Amann R. The species concept for prokaryotes. FEMS Microbiol Rev 2001; 25:39–67 [View Article]
    [Google Scholar]
  21. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 2005; 102:2567–2572 [View Article]
    [Google Scholar]
  22. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article][PubMed]
    [Google Scholar]
  23. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2018
    [Google Scholar]
  24. Foley MH, Cockburn DW, Koropatkin NM. The Sus operon: a model system for starch uptake by the human gut Bacteroidetes. Cell Mol Life Sci 2016; 73:2603–2617 [View Article]
    [Google Scholar]
  25. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703 [View Article]
    [Google Scholar]
  26. Choo Y-J, Lee K, Song J, Cho J-C. Puniceicoccus vermicola gen. nov., sp. nov., a novel marine bacterium, and description of Puniceicoccaceae fam. nov., Puniceicoccales ord. nov., Opitutaceae fam. nov., Opitutales ord. nov. and Opitutae classis nov. in the phylum 'Verrucomicrobia'. Int J Syst Evol Microbiol 2007; 57:532–537 [View Article]
    [Google Scholar]
  27. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids; 1990
  28. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  29. Collins MD. Analysis of isoprenoid quinones. Method Microbiol 1985329–366
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004122
Loading
/content/journal/ijsem/10.1099/ijsem.0.004122
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error