1887

Abstract

A novel bacterium, designated JB02H27, was isolated from marine sediment collected from the southern Scott Coast, Antarctica. Cells were Gram-stain-negative, facultatively anaerobic, polar-flagellated and motile rods. Growth occurred at 4–45 °C, at pH 7.0–9.0 and with 3–25 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences showed that strain JB02H27 consistently fell within the genus and formed a clade together with DG893 (98.8 % similarity), KCTC 42705 (98.4 %), R9SW1 (98.4%) and CP12 (97.9 %), which were subsequently used as reference strains for comparisons of phenotypic and chemotaxonomic characteristics. Average nucleotide identity values between strain JB02H27 and the four related type strains were 80.9, 76.6, 81.9 and 76.3 %, respectively. The major fatty acids were summed feature 3, C, C 9 and C N alcohol. The polar lipids included phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and an unidentified phospholipid, aminolipid, aminophospholipid and glycolipids. The sole respiratory quinone was ubiquinone-9. The DNA G+C content was 56.9 mol%. Based on the genomic, phylogenetic, phenotypic and chemotaxonomic analysis, we propose that strain JB02H27 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is JB02H27 (=GDMCC 1.1528=KCTC 62941).

Funding
This study was supported by the:
  • Ming-Xia Zhang , GDAS' Special Project of Science and Technology Development , (Award 2020GDASYL-20200302002)
  • Hong-Hui Zhu , Science and Technology Plan Project of Guangzhou , (Award 201704020088)
  • Hong-Hui Zhu , Science and Technology Plan Project of Guangdong , (Award 2019B030316009, 2018A030313476)
  • An-Zhang Li , Pearl River S&T Nova Program of Guangzhou , (Award 201806010065)
  • Ming-Xia Zhang , Guangdong Province Science and Technology Innovation Strategy Special Fund , (Award 2019B020215001)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004120
2020-03-26
2020-06-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2918.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004120&mimeType=html&fmt=ahah

References

  1. Liu Q, Xamxidin M, Sun C, Cheng H, Meng F-X et al. Marinobacter fuscus sp. nov., a marine bacterium of Gammaproteobacteria isolated from surface seawater. Int J Syst Evol Microbiol 2018; 68:3156–3162 [CrossRef]
    [Google Scholar]
  2. Handley KM, Héry M, Lloyd JR. Marinobacter santoriniensis sp. nov., an arsenate-respiring and arsenite-oxidizing bacterium isolated from hydrothermal sediment. Int J Syst Evol Microbiol 2009; 59:886–892 [CrossRef]
    [Google Scholar]
  3. Rani S, Koh H-W, Kim H, Rhee S-K, Park S-J. Marinobacter salinus sp. nov., a moderately halophilic bacterium isolated from a tidal flat environment. Int J Syst Evol Microbiol 2017; 67:205–211 [CrossRef]
    [Google Scholar]
  4. Gu J, Cai H, Yu S-L, Qu R, Yin B et al. Marinobacter gudaonensis sp. nov., isolated from an oil-polluted saline soil in a Chinese oilfield. Int J Syst Evol Microbiol 2007; 57:250–254 [CrossRef]
    [Google Scholar]
  5. Lee OO, Lai PY, Wu H-xian, Zhou X-jian, Miao L et al. Marinobacter xestospongiae sp. nov., isolated from the marine sponge Xestospongia testudinaria collected from the Red Sea. Int J Syst Evol Microbiol 2012; 62:1980–1985 [CrossRef]
    [Google Scholar]
  6. Green DH, Bowman JP, Smith EA, Gutierrez T, Bolch CJS. Marinobacter algicola sp. nov., isolated from laboratory cultures of paralytic shellfish toxin-producing dinoflagellates. Int J Syst Evol Microbiol 2006; 56:523–527 [CrossRef]
    [Google Scholar]
  7. Liebgott P-P, Casalot L, Paillard S, Lorquin J, Labat M. Marinobacter vinifirmus sp. nov., a moderately halophilic bacterium isolated from a wine-barrel-decalcification wastewater. Int J Syst Evol Microbiol 2006; 56:2511–2516 [CrossRef]
    [Google Scholar]
  8. Wang C-Y, Ng C-C, Tzeng W-S, Shyu Y-T. Marinobacter szutsaonensis sp. nov., isolated from a solar saltern. Int J Syst Evol Microbiol 2009; 59:2605–2609 [CrossRef]
    [Google Scholar]
  9. Kim B-Y, Weon H-Y, Yoo S-H, Kim J-S, Kwon S-W et al. Marinobacter koreensis sp. nov., isolated from sea sand in Korea. Int J Syst Evol Microbiol 2006; 56:2653–2656 [CrossRef]
    [Google Scholar]
  10. Boujida N, Palau M, Charfi S, Manresa Àngels, Skali Senhaji N et al. Marinobacter maroccanus sp. nov., a moderately halophilic bacterium isolated from a saline soil. Int J Syst Evol Microbiol 2019; 69:227–234 [CrossRef]
    [Google Scholar]
  11. Zhong Z-P, Liu Y, Liu H-C, Wang F, Zhou Y-G et al. Marinobacter halophilus sp. nov., a halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 2015; 65:2838–2845 [CrossRef]
    [Google Scholar]
  12. Gomes FO, Maia LB, Cordas C, Moura I, Delerue-Matos C et al. Electroanalytical characterization of the direct Marinobacter hydrocarbonoclasticus nitric oxide reductase-catalysed nitric oxide and dioxygen reduction. Bioelectrochem 2019; 125:8–14 [CrossRef]
    [Google Scholar]
  13. Zheng N, Ding N, Gao P, Han M, Liu X et al. Diverse algicidal bacteria associated with harmful bloom-forming Karenia mikimotoi in estuarine soil and seawater. Sci Total Environ 2018; 631-632:1415–1420 [CrossRef]
    [Google Scholar]
  14. Wang W, Zhang R, Zhong R, Shan D, Shao Z. Indigenous oil-degrading bacteria in crude oil-contaminated seawater of the Yellow Sea, China. Appl Microbiol Biotechnol 2014; 98:7253–7269 [CrossRef]
    [Google Scholar]
  15. Yuan J, Lai QL, Sun FQ, Zheng TL, Shao ZZ. The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge. Front Microbiol 2015; 6: [CrossRef]
    [Google Scholar]
  16. Zolfaghar M, Amoozegar MA, Khajeh K, Babavalian H, Tebyanian H. Isolation and screening of extracellular anticancer enzymes from halophilic and halotolerant bacteria from different saline environments in Iran. Mol Biol Rep 2019; 46:3275–3286 [CrossRef]
    [Google Scholar]
  17. Zenati B, Chebbi A, Badis A, Eddouaouda K, Boutoumi H et al. A non-toxic microbial surfactant from Marinobacter hydrocarbonoclasticus SdK644 for crude oil solubilization enhancement. Ecotoxicol Environ Saf 2018; 154:100–107 [CrossRef]
    [Google Scholar]
  18. Boujida N, Palau M, Charfi S, El Moussaoui N, Manresa A et al. Isolation and characterization of halophilic bacteria producing exopolymers with emulsifying and antioxidant activities. Biocatal Agric Biotechnol 2018; 16:631–637 [CrossRef]
    [Google Scholar]
  19. Chua MJ, Campen RL, Wahl L, Grzymski JJ, Mikucki JA. Genomic and physiological characterization and description of Marinobacter gelidimuriae sp. nov., a psychrophilic, moderate halophile from blood falls, an Antarctic subglacial brine. FEMS Microbiol Ecol 2018; 94: [CrossRef]
    [Google Scholar]
  20. Bird LJ, Wang Z, Malanoski AP, Onderko EL, Johnson BJ et al. Development of a genetic system for Marinobacter atlanticus CP1 (sp. nov.), a wax ester producing strain isolated from an autotrophic biocathode. Front Microbiol 2018; 9: [CrossRef]
    [Google Scholar]
  21. Miklaszewska M, Dittrich-Domergue F, Banaś A, Domergue F. Wax synthase MhWS2 from Marinobacter hydrocarbonoclasticus: substrate specificity and biotechnological potential for wax ester production. Appl Microbiol Biotechnol 2018; 102:4063–4074 [CrossRef]
    [Google Scholar]
  22. Jean WD, Shieh WY, Chiu H-H. Pseudidiomarina taiwanensis gen. nov., sp. nov., a marine bacterium isolated from shallow coastal water of An-Ping Harbour, Taiwan, and emended description of the family Idiomarinaceae . Int J Syst Evol Microbiol 2006; 56:899–905 [CrossRef]
    [Google Scholar]
  23. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M et al. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 1992; 42:568–576 [CrossRef]
    [Google Scholar]
  24. Zhang Y, Zhong XC, Xu W, DC L, Zhao JX et al. Marinobacter vulgaris sp. nov., a moderately halophilic bacterium isolated from a marine solar saltern. Int J Syst Evol Microbiol 2019
    [Google Scholar]
  25. Xu S, Wang D, Wei Y, Cui Q, Li W. Marinobacter bohaiensis sp. nov., a moderate halophile isolated from benthic sediment of the Bohai sea. Int J Syst Evol Microbiol 2018; 68:3534–3539 [CrossRef]
    [Google Scholar]
  26. Han J-R, Ling S-K, Yu W-N, Chen G-J, Du Z-J. Marinobacter salexigens sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2017; 67:4595–4600 [CrossRef]
    [Google Scholar]
  27. León MJ, Sánchez-Porro C, Ventosa A. Marinobacter aquaticus sp. nov., a moderately halophilic bacterium from a solar saltern. Int J Syst Evol Microbiol 2017; 67:2622–2627 [CrossRef]
    [Google Scholar]
  28. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef]
    [Google Scholar]
  29. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [CrossRef]
    [Google Scholar]
  30. Brooks L, Kaze M, Sistrom M. A curated, comprehensive database of plasmid sequences. Microbiol Resour Announc 2019; 8:e01325–18 [CrossRef]
    [Google Scholar]
  31. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [CrossRef]
    [Google Scholar]
  32. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef]
    [Google Scholar]
  33. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [CrossRef]
    [Google Scholar]
  34. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:1912619131 [CrossRef]
    [Google Scholar]
  35. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc Committee on reconciliation of approaches to bacterial Systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
  36. Tindall BJ, Sikorski J, Smibert RA, Krieg NR et al. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society of Microbiology; 2007 pp 330–393
    [Google Scholar]
  37. Lanyi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1988; 19:1–67
    [Google Scholar]
  38. Skerman VB. A guide to the identification of the genera of bacteria. Acad Med 1960; 35:92
    [Google Scholar]
  39. Li A-Z, Lin L-Z, Zhang M-X, Zhu H-H. Antarcticibacterium flavum gen. nov., sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2018; 68:254–259 [CrossRef]
    [Google Scholar]
  40. Li A-Z, Lin L-Z, Zhang M-X, Lv Y, Zhu H-H. Arenibacter catalasegens sp. nov., isolated from marine surface sediment, and emended description of the genus Arenibacter . Int J Syst Evol Microbiol 2018; 68:758–763 [CrossRef]
    [Google Scholar]
  41. Park S, Kim S, Kang C-H, Jung Y-T, Yoon J-H. Marinobacter confluentis sp. nov., a lipolytic bacterium isolated from a junction between the ocean and a freshwater lake. Int J Syst Evol Microbiol 2015; 65:4873–4879 [CrossRef]
    [Google Scholar]
  42. Kim J-O, Lee H-J, Han S-I, Whang K-S. Marinobacter halotolerans sp. nov., a halophilic bacterium isolated from a saltern crystallizing pond. Int J Syst Evol Microbiol 2017; 67:460–465 [CrossRef]
    [Google Scholar]
  43. Cui Z, Gao W, Xu G, Luan X, Li Q et al. Marinobacter aromaticivorans sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from sea sediment. Int J Syst Evol Microbiol 2016; 66:353–359 [CrossRef]
    [Google Scholar]
  44. Montero-Calasanz MdelC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium . Int J Syst Evol Microbiol 2013; 63:4386–4395 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004120
Loading
/content/journal/ijsem/10.1099/ijsem.0.004120
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error