1887

Abstract

A novel actinobacterial strain, designated 13K301, was isolated from a soil sample collected from the Karakum Desert, Turkmenistan. The taxonomic position of strain 13K301 was revealed by using a polyphasic approach. On the basis of 16S rRNA gene sequence analysis, strain 13K301 belongs to the genus and had highest sequence similarity to ‘’ S10 (99.2 %), NRRL B-16367 (98.9 %) and DSM 41896 (98.8 %), but the strain formed a distinct clade in the phylogenetic tree. The DNA–DNA relatedness and average nucleotide identity values as well as evolutionary distances based on multilocus (, , , and ) sequences between strain 13K301 and closely related type strains were significantly lower than the recommended threshold values. The cell wall contained -diaminopimelic acid and the whole-cell hydrolysates were glucose and ribose. Diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol were determined as the predominant polar lipids. The major menaquinones were identified as MK-9(H) and MK-9(H). On the basis of these genotypic and phenotypic data, it is proposed that strain 13K301 should be classified as representative of a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 13K301 (=DSM 106873=KCTC 49110). In addition, the whole genome-based comparisons as well as the multilocus sequence analysis revealed that the type strains of and belong to a single species. It is, therefore, proposed that be recognised as a heterotypic synonym of for which an emended description is given.

Funding
This study was supported by the:
  • Nevzat Sahin , Ondokuz Mayis Üniversitesi , (Award PYO.FEN.1901.16.001)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004103
2020-03-16
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2750.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004103&mimeType=html&fmt=ahah

References

  1. Kämpfer P, Labeda D. International Committee on Systematics of Prokaryotes; Subcommittee on the taxonomy of the Streptomycetaceae . Int J Syst Evol Microbiol 2006; 56:495
    [Google Scholar]
  2. Waksman SA, Henrici AT. The nomenclature and classification of the actinomycetes. J Bacteriol 1943; 46:337341 [CrossRef]
    [Google Scholar]
  3. Kämpfer P, Genus I. Streptomyces Waksman and Henrici 1943, 339AL emend. Witt and Stackebrandt 1990, 370 emend. Wellington, Stackebrandt, Sanders, Wolstrup and Jorgensen 1992, 159. In Goodfellow M, Kampfer P, Busse HJ, Trujillo ME, Suzuki K. (editors) Bergey's Manual of Systematic Bacteriology 5 2012 pp 1455–1467
    [Google Scholar]
  4. Kämpfer P, Glaeser SP, Parkes L, van Keulen G, Dyson P. The family Streptomycetaceae The Prokaryotes: Actinobacteria; 2014 pp 889–1010
    [Google Scholar]
  5. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20:435–443 [CrossRef]
    [Google Scholar]
  6. Williams ST, Goodfellow M, Alderson G. Genus Streptomyces Waksman and Henrici 1943, 339AL. In Williams ST, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriology 4 Baltimore: Williams & Willkins; 1989 pp 2453–2492
    [Google Scholar]
  7. Labeda DP, Doroghazi JR, Ju K-S, Metcalf WW. Taxonomic evaluation of Streptomyces albus and related species using multilocus sequence analysis and proposals to emend the description of Streptomyces albus and describe Streptomyces pathocidini sp. nov. Int J Syst Evol Microbiol 2014; 64:894900 [CrossRef]
    [Google Scholar]
  8. Labeda DP, Dunlap CA, Rong X, Huang Y, Doroghazi JR et al. Phylogenetic relationships in the family Streptomycetaceae using multi-locus sequence analysis. Antonie Van Leeuwenhoek 2017; 110:563–583 [CrossRef]
    [Google Scholar]
  9. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-Based Taxonomic Classification of the Phylum Actinobacteria . Front Microbiol 2018; 9:9 [CrossRef]
    [Google Scholar]
  10. Bérdy J. Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 2012; 65:385395 [CrossRef]
    [Google Scholar]
  11. Bérdy J. Microorganisms producing antibiotics. In Sanchez S, Demain AL. (editors) Antibiotics–Current Innovations and Future Trends Norfolk: Caister Academic Press; 2015 pp 49–64
    [Google Scholar]
  12. Busarakam K, Bull AT, Girard G, Labeda DP, van Wezel GP et al. Streptomyces leeuwenhoekii sp. nov., the producer of chaxalactins and chaxamycins, forms a distinct branch in Streptomyces gene trees. Antonie Van Leeuwenhoek 2014; 105:849–861 [CrossRef]
    [Google Scholar]
  13. Goodfellow M, Busarakam K, Idris H, Labeda DP, Nouioui I et al. Streptomyces asenjonii sp. nov., isolated from hyper-arid Atacama desert soils and emended description of Streptomyces viridosporus Pridham et al. 1958. Antonie Van Leeuwenhoek 2017; 110:1133–1148 [CrossRef]
    [Google Scholar]
  14. Idris H, Labeda DP, Nouioui I, Castro JF, Del Carmen Montero-Calasanz M et al. Streptomyces aridus sp. nov., isolated from a high altitude Atacama desert soil and emended description of Streptomyces noboritoensis Isono et al. 1957. Antonie Van Leeuwenhoek 2017; 110:705–717 [CrossRef]
    [Google Scholar]
  15. Li L-Y, Yang Z-W, Asem MD, Fang B-Z, Salam N et al. Streptomyces desertarenae sp. nov., a novel actinobacterium isolated from a desert sample. Antonie Van Leeuwenhoek 2019; 112:367–374 [CrossRef]
    [Google Scholar]
  16. Hamm PS, Caimi NA, Northup DE, Valdez EW, Buecher DC et al. Streptomyces corynorhini sp. nov., isolated from Townsend's big-eared bats (Corynorhinus townsendii). Antonie Van Leeuwenhoek 2019; 112:1297–1305 [CrossRef]
    [Google Scholar]
  17. Wang H-F, Li Q-L, Xiao M, Zhang Y-G, Zhou X-K et al. Streptomyces capparidis sp. nov., a novel endophytic actinobacterium isolated from fruits of Capparis spinosa L. Int J Syst Evol Microbiol 2017; 67:133–137 [CrossRef]
    [Google Scholar]
  18. Liu C, Han C, Jiang S, Zhao X, Tian Y et al. Streptomyces lasii sp. nov., a novel actinomycete with antifungal activity isolated from the head of an ant (Lasius flavus). Curr Microbiol 2018; 75:353–358 [CrossRef]
    [Google Scholar]
  19. Ye L, Zhao S, Li Y, Jiang S, Zhao Y et al. Streptomyces lasiicapitis sp. nov., an actinomycete that produces kanchanamycin, isolated from the head of an ant (Lasius fuliginosus L.). Int J Syst Evol Microbiol 2017; 67:1529–1534 [CrossRef]
    [Google Scholar]
  20. Ay H, Nouioui I, Del Carmen Montero-Calasanz M, Klenk H-P, Isik K et al. Streptomyces sediminis sp. nov. isolated from crater lake sediment. Antonie Van Leeuwenhoek 2018; 111:493–500 [CrossRef]
    [Google Scholar]
  21. Ray L, Mishra SR, Panda AN, Das S, Rastogi G et al. Streptomyces chitinivorans sp. nov., a chitinolytic strain isolated from estuarine lake sediment. Int J Syst Evol Microbiol 2016; 66:3241–3248 [CrossRef]
    [Google Scholar]
  22. Tang X, Zhao J, Li K, Chen Z, Sun Y et al. Streptomyces cyaneochromogenes sp. nov., a blue pigment-producing actinomycete from manganese-contaminated soil. Int J Syst Evol Microbiol 2019; 69:2202–2207 [CrossRef]
    [Google Scholar]
  23. Hu H, Lin H-P, Xie Q, Li L, Xie X-Q et al. Streptomyces qinglanensis sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2012; 62:596–600 [CrossRef]
    [Google Scholar]
  24. Sui J-L, Xu X-X, Qu Z, Wang H-L, Lin H-P et al. Streptomyces sanyensis sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2011; 61:1632–1637 [CrossRef]
    [Google Scholar]
  25. Law JW-F, Ser H-L, Ab Mutalib N-S, Saokaew S, Duangjai A et al. Streptomyces monashensis sp. nov., a novel mangrove soil actinobacterium from East Malaysia with antioxidative potential. Sci Rep 2019; 9:3056 [CrossRef]
    [Google Scholar]
  26. Khan ST, Tamura T, Takagi M, Shin-Ya K. Streptomyces tateyamensis sp. nov., Streptomyces marinus sp. nov. and Streptomyces haliclonae sp. nov., isolated from the marine sponge Haliclona sp. Int J Syst Evol Microbiol 2010; 60:2775–2779 [CrossRef]
    [Google Scholar]
  27. Silva FSP, Souza DT, Zucchi TD, Pansa CC, de Figueiredo Vasconcellos RL et al. Streptomyces atlanticus sp. nov., a novel actinomycete isolated from marine sponge Aplysina fulva (Pallas, 1766). Antonie Van Leeuwenhoek 2016; 109:1467–1474 [CrossRef]
    [Google Scholar]
  28. Phongsopitanun W, Kudo T, Ohkuma M, Pittayakhajonwut P, Suwanborirux K et al. Streptomyces verrucosisporus sp. nov., isolated from marine sediments. Int J Syst Evol Microbiol 2016; 66:3607–3613 [CrossRef]
    [Google Scholar]
  29. Veyisoglu A, Sahin N. Streptomyces hoynatensis sp. nov., isolated from deep marine sediment. Int J Syst Evol Microbiol 2014; 64:819–826 [CrossRef]
    [Google Scholar]
  30. Piao C, Ling L, Zhao J, Jin L, Jiang S et al. Streptomyces urticae sp. nov., isolated from rhizosphere soil of Urtica urens L. Antonie Van Leeuwenhoek 2018; 111:1835–1843 [CrossRef]
    [Google Scholar]
  31. Sujarit K, Kudo T, Ohkuma M, Pathom-Aree W, Lumyong S. Streptomyces venetus sp. nov., an actinomycete with a blue aerial mycelium. Int J Syst Evol Microbiol 2018; 68:3333–3339 [CrossRef]
    [Google Scholar]
  32. Lin YB, Wang XY, Li HF, Wang NN, Wang HX et al. Streptomyces zinciresistens sp. nov., a zinc-resistant actinomycete isolated from soil from a copper and zinc mine. Int J Syst Evol Microbiol 2011; 61:616–620 [CrossRef]
    [Google Scholar]
  33. Li J, Zhao G-Z, Zhu W-Y, Huang H-Y, Xu L-H et al. Streptomyces endophyticus sp. nov., an endophytic actinomycete isolated from Artemisia annua L. Int J Syst Evol Microbiol 2013; 63:224–229 [CrossRef]
    [Google Scholar]
  34. Wang Z, Tian J, Li X, Gan L, He L et al. Streptomyces dioscori sp. nov., a novel endophytic actinobacterium isolated from Bulbil of Dioscorea bulbifera L. Curr Microbiol 2018; 75:1384–1390 [CrossRef]
    [Google Scholar]
  35. Saricaoglu S, Isik K, Veyisoglu A, Saygin H, Cetin D et al. Streptomyces burgazadensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014; 64:4043–4048 [CrossRef]
    [Google Scholar]
  36. Zhang B, Tang S, Yang R, Chen X, Zhang D et al. Streptomyces dangxiongensis sp. nov., isolated from soil of Qinghai-Tibet Plateau. Int J Syst Evol Microbiol 2019; 69:2729–2734 [CrossRef]
    [Google Scholar]
  37. Jiang Y, Li Q, Chen X, Jiang C. Isolation and cultivation methods of Actinobacteria . In Dhanasekaran D, Jiang Y. (editors) Actinobacteria–Basics and Biotechnological Applications 2016 pp 39–57
    [Google Scholar]
  38. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [CrossRef]
    [Google Scholar]
  39. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [CrossRef]
    [Google Scholar]
  40. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:16131617 [CrossRef]
    [Google Scholar]
  41. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [CrossRef]
    [Google Scholar]
  42. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef]
    [Google Scholar]
  43. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [CrossRef]
    [Google Scholar]
  44. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef]
    [Google Scholar]
  45. Jukes TH, Cantor CR. Evolution of protein molecules. In HN M. editor Mammalian protein metabolism New York: Academic Press; 1969 pp 21–132
    [Google Scholar]
  46. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef]
    [Google Scholar]
  47. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [CrossRef]
    [Google Scholar]
  48. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [CrossRef]
    [Google Scholar]
  49. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [CrossRef]
    [Google Scholar]
  50. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [CrossRef]
    [Google Scholar]
  51. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [CrossRef]
    [Google Scholar]
  52. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef]
    [Google Scholar]
  53. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [CrossRef]
    [Google Scholar]
  54. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [CrossRef]
    [Google Scholar]
  55. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [CrossRef]
    [Google Scholar]
  56. Rong X, Huang Y. Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA-DNA hybridization, validating the MLSA scheme for Systematics of the whole genus. Syst Appl Microbiol 2012; 35:7–18 [CrossRef]
    [Google Scholar]
  57. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. Dna-Dna hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef]
    [Google Scholar]
  58. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc Committee on reconciliation of approaches to bacterial Systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
  59. Park SR, Tripathi A, Wu J, Schultz PJ, Yim I et al. Discovery of cahuitamycins as biofilm inhibitors derived from a convergent biosynthetic pathway. Nat Commun 2016; 7:10710 [CrossRef]
    [Google Scholar]
  60. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [CrossRef]
    [Google Scholar]
  61. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:1–6
    [Google Scholar]
  62. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  63. Kroppenstedt RM, Goodfellow M. The family Thermomonosporaceae: Actinocorallia, Actinomadura, Spirillospora and Thermomonospora . The Prokaryotes Springer; 2006 pp 682–724
    [Google Scholar]
  64. Collins M. Isoprenoid quinone analysis in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics Academic Press; 1985
    [Google Scholar]
  65. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [CrossRef]
    [Google Scholar]
  66. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949; 57:141–145 [CrossRef]
    [Google Scholar]
  67. Waksman SA. The Actinomycetes. A summary of current knowledge New York: Ronald Press; 1967
    [Google Scholar]
  68. Waksman SA. The Actinomycetes. Classification, identification and descriptions of genera and species II Baltimore: Williams & Wilkins; 1961
    [Google Scholar]
  69. Kelly KL. Color-Name Charts Illustrated with Centroid Colors Chicago (Published in USA: Inter-Society Color Council-National Bureau of Standards; 1964
    [Google Scholar]
  70. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983; 129:1743–1813 [CrossRef]
    [Google Scholar]
  71. Nash P, Krent MM. Culture media. In Ballows AHW, Herrmann KL, Isenberg HD, Shadomy HJ. (editors) Manual of Clinical Microbiology, 5th ed. Washington, DC: American Society for Microbiology; 1991 pp 1268–1270
    [Google Scholar]
  72. Goodfellow M. Numerical taxonomy of some nocardioform bacteria. J Gen Microbiol 1971; 69:33–80 [CrossRef]
    [Google Scholar]
  73. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [CrossRef]
    [Google Scholar]
  74. Küster E, Williams ST. Production of hydrogen sulfide by streptomycetes and methods for its detection. Appl Microbiol 1964; 12:46–52 [CrossRef]
    [Google Scholar]
  75. Ettlinger L, Corbaz R, Hütter R. Zur Systematik Der Actinomyceten. 4. Eine arteinteilung Der gattung Streptomyces Waksman et Henrici. Archiv für Mikrobiologie 1958; 31:326–358
    [Google Scholar]
  76. Zhang B, Tang S, Chen X, Zhang G, Zhang W et al. Streptomyces qaidamensis sp. nov., isolated from sand in the Qaidam Basin, China. J Antibiot 2018; 71:880–886 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004103
Loading
/content/journal/ijsem/10.1099/ijsem.0.004103
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error