1887

Abstract

A novel Gram-stain-positive, aerobic, motile with peritrichous flagella, rod-shaped bacterium, designated CC-MHH1044, was isolated from a preserved vegetable sample. A polyphasic taxonomic approach was applied to the isolates in order to clarify its taxonomic position. Growth of the strain CC-MHH1044 occurred at 15–50 °C (optimum, 30 °C), pH 6.0–8.0 (optimum, pH 7.0) and with 0–2.0 % (w/v) NaCl (optimum, 1 %, w/v). The genome of strain CC-MHH1044 consisted of 8.5 Mb and the genomic DNA G+C content was 58.5 mol%. Comparison of the 16S rRNA gene sequences showed that CC-MHH1044 belonged to the genus and showed a close relationship with the type strains of (96.2 %) and (95.9 %), and lower sequence similarity to other species. Average nucleotide identity values calculated from whole-genome sequencing data proved that CC-MHH1044 represents a distinct species. The dominant cellular fatty acids (>5 %) included iso-C(7.4 %), iso-C (6.4 %), anteiso-C(40.3 %), C (6.6 %) and iso-C (27.0 %). The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, four unidentified aminophospholipids, one unidentified phospholipid and glycolipid. The major polyamine was spermidine. The predominant isoprenoid quinone was menaqinone 7 (MK-7). Based on its distinct phylogenetic, phenotypic and chemotaxonomic traits, together with results of comparative 16S rRNA gene sequence, average nucleotide identity and digital DNA–DNA hybridization analyses, we conclude that strain CC-MHH1044 represents a novel member of the genus , for which the name sp. nov. is proposed. The type strain is CC-MHH1044 (=BCRC 81147=JCM 32834).

Funding
This study was supported by the:
  • Ministry of Science and Technology, Taiwan (Award MOST 109-2634-F-005-002)
    • Principle Award Recipient: Chiu-Chung Young
  • Ministry of Science and Technology, Taiwan (Award MOST 109-2634-F-005-002)
    • Principle Award Recipient: Shih-Yao Lin
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004080
2020-03-11
2024-05-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2602.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004080&mimeType=html&fmt=ahah

References

  1. Kämpfer P, Rosselló-Mora R, Falsen E, Busse H-J, Tindall BJ. Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis’ as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 2006; 56:781–786 [View Article]
    [Google Scholar]
  2. Yoon M-H, Ten LN, Im W-T. Cohnella panacarvi sp. nov., a xylanolytic bacterium isolated from ginseng cultivating soil. J Microbiol Biotechnol 2007; 17:913–918
    [Google Scholar]
  3. Cai F, Wang Y, Qi H, Dai J, Yu B et al. Cohnella luojiensis sp. nov., isolated from soil of a Euphrates poplar forest. Int J Syst Evol Microbiol 2010; 60:1605–1608 [View Article]
    [Google Scholar]
  4. Khianngam S, Tanasupawat S, Akaracharanya A, Kim KK, Lee KC et al. Cohnella thailandensis sp. nov., a xylanolytic bacterium from Thai soil. Int J Syst Evol Microbiol 2010; 60:2284–2287 [View Article]
    [Google Scholar]
  5. Khianngam S, Tanasupawat S, Akaracharanya A, Kim KK, Lee KC et al. Cohnella xylanilytica sp. nov. and Cohnella terrae sp. nov., xylanolytic bacteria from soil. Int J Syst Evol Microbiol 2010; 60:2913–2917 [View Article]
    [Google Scholar]
  6. Kim S-J, Weon H-Y, Kim Y-S, Anandham R, Jeon Y-A et al. Cohnella yongneupensis sp. nov. and Cohnella ginsengisoli sp. nov., isolated from two different soils. Int J Syst Evol Microbiol 2010; 60:526–530 [View Article]
    [Google Scholar]
  7. Kim S-J, Weon H-Y, Kim Y-S, Kwon S-W. Cohnella soli sp. nov. and Cohnella suwonensis sp. nov. Isolated from soil samples in Korea. J Microbiol 2011; 49:1033–1038 [View Article]
    [Google Scholar]
  8. Jiang F, Dai J, Wang Y, Xue X, Xu M et al. Cohnella arctica sp. nov., isolated from Arctic tundra soil. Int J Syst Evol Microbiol 2012; 62:817–821 [View Article]
    [Google Scholar]
  9. Yoon J-H, Jung Y-T. Cohnella boryungensis sp. nov., isolated from soil. Antonie van Leeuwenhoek 2012; 101:769–775 [View Article]
    [Google Scholar]
  10. Huang Z, Yu Y-J, Bao Y-Y, Xia L, Sheng X-F et al. Cohnella nanjingensis sp. nov., an extracellular polysaccharide-producing bacterium isolated from soil. Int J Syst Evol Microbiol 2014; 64:3320–3324 [View Article]
    [Google Scholar]
  11. Lee KC, Kim KK, Kim J-S, Kim D-S, Ko S-H et al. Cohnella collisoli sp. nov., isolated from lava forest soil. Int J Syst Evol Microbiol 2015; 65:3125–3130 [View Article]
    [Google Scholar]
  12. Choi J-H, Seok J-H, Jang H-J, Cha J-H, Cha C-J. Cohnella saccharovorans sp. nov., isolated from ginseng soil. Int J Syst Evol Microbiol 2016; 66:1713–1717 [View Article]
    [Google Scholar]
  13. Shiratori H, Tagami Y, Beppu T, Ueda K. Cohnella fontinalis sp. nov., a xylanolytic bacterium isolated from fresh water. Int J Syst Evol Microbiol 2010; 60:1344–1348 [View Article]
    [Google Scholar]
  14. García-Fraile P, Velázquez E, Mateos PF, Martínez-Molina E, Rivas R. Cohnella phaseoli sp. nov., isolated from root nodules of Phaseolus coccineus in Spain, and emended description of the genus Cohnella . Int J Syst Evol Microbiol 2008; 58:1855–1859 [View Article]
    [Google Scholar]
  15. Hameed A, Hung M-H, Lin S-Y, Hsu Y-H, Liu Y-C et al. Cohnella formosensis sp. nov., a xylanolytic bacterium isolated from the rhizosphere of Medicago sativa L. Int J Syst Evol Microbiol 2013; 63:2806–2812 [View Article]
    [Google Scholar]
  16. Flores-Félix JD, Carro L, Ramírez-Bahena M-H, Tejedor C, Igual JM et al. Cohnella lupini sp. nov., an endophytic bacterium isolated from root nodules of Lupinus albus . Int J Syst Evol Microbiol 2014; 64:83–87 [View Article]
    [Google Scholar]
  17. Kämpfer P, Glaeser SP, McInroy JA, Busse H-J. Cohnella rhizosphaerae sp. nov., isolated from the rhizosphere environment of Zea mays . Int J Syst Evol Microbiol 2014; 64:1811–1816 [View Article]
    [Google Scholar]
  18. Khianngam S, Tanasupawat S, Akaracharanya A, Kim KK, Lee KC et al. Cohnella cellulosilytica sp. nov., isolated from buffalo faeces. Int J Syst Evol Microbiol 2012; 62:1921–1925 [View Article]
    [Google Scholar]
  19. Lee Y, Jeon CO. Cohnella algarum sp. nov., isolated from a freshwater green alga Paulinella chromatophora . Int J Syst Evol Microbiol 2017; 67:4767–4772 [View Article]
    [Google Scholar]
  20. Kämpfer P, Glaeser SP, Busse H-J. Cohnella lubricantis sp. nov., isolated from a coolant lubricant solution. Int J Syst Evol Microbiol 2017; 67:466–471 [View Article]
    [Google Scholar]
  21. Kudryashova EB, Karlyshev AV, Ariskina EV, Streshinskaya GM, Vinokurova NG et al. Cohnella kolymensis sp. nov., a novel bacillus isolated from Siberian permafrost. Int J Syst Evol Microbiol 2018; 68:2912–2917 [View Article]
    [Google Scholar]
  22. Jiang L, Pheng S, Lee KC, Kang SW, Jeong JC et al. Cohnella abietis sp. nov., isolated from Korean fir (Abies koreana) rhizospheric soil of Halla mountain. J Microbiol 2019; 57:953–958 [View Article]
    [Google Scholar]
  23. Maeng S, Kim MK, Jang JH, Yi H, Subramani G. Cohnella candidum sp. nov., radiation-resistant bacterium from soil. Antonie Van Leeuwenhoek 2019; 112:1029–1037 [View Article]
    [Google Scholar]
  24. Meng L-J, Tuo L, Yan X-R. Cohnella endophytica sp. nov., a novel endophytic bacterium isolated from bark of Sonneratia apetala . Int J Syst Evol Microbiol 2019; 69:2004–2009 [View Article]
    [Google Scholar]
  25. Zhu H-Z, Liu X-D, Jiang C-Y, Liu S-J. Cohnella faecalis sp. nov., isolated from animal faeces in a karst cave. Int J Syst Evol Microbiol 2019; 69:572–577 [View Article]
    [Google Scholar]
  26. Abou Abdallah R, Bou Khalil J, Andrieu C, Tomeï E, Armstrong N et al. Draft genome and description of Cohnella massiliensis sp. nov., a new bacterial species isolated from the blood culture of a hemodialysis patient. Arch Microbiol 2019; 201:305–312 [View Article]
    [Google Scholar]
  27. Zhou J, Fries MR, Chee-Sanford JC, Tiedje JM. Phylogenetic analyses of a new group of denitrifiers capable of anaerobic growth of toluene and description of Azoarcus tolulyticus sp. nov. Int J Syst Bacteriol 1995; 45:500–506 [View Article]
    [Google Scholar]
  28. Heiner CR, Hunkapiller KL, Chen SM, Glass JI, Chen EY. Sequencing multimegabase-template DNA with BigDye terminator chemistry. Genome Res 1998; 8:557–561 [View Article]
    [Google Scholar]
  29. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  30. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article]
    [Google Scholar]
  31. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  32. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article]
    [Google Scholar]
  33. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  34. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  35. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. editor Mammalian Protein Metabolism 3 New York: Academic Press; 1969 pp 21–32
    [Google Scholar]
  36. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  37. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article]
    [Google Scholar]
  38. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  39. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  40. de Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E et al. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol 2019; 69:1852–1863 [View Article]
    [Google Scholar]
  41. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  42. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  43. de Lajudie PM, Young JPW, Wang JPW. International committee on systematics of prokaryotes subcommittee for the taxonomy of Rhizobium and Agrobacterium Minutes of the meeting, Budapest, 25 August 2016. Int J Syst Evol Microbiol 2017; 67:2485–2494 [View Article]
    [Google Scholar]
  44. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article]
    [Google Scholar]
  45. Murray RGE, Doetsch RN, Robinow CF. Determination and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 32–34
    [Google Scholar]
  46. Lin S-Y, Liu Y-C, Hameed A, Hsu Y-H, Lai W-A et al. Azospirillum fermentarium sp. nov., a nitrogen-fixing species isolated from a fermenter. Int J Syst Evol Microbiol 2013; 63:3762–3768 [View Article]
    [Google Scholar]
  47. Hameed A, Shahina M, Lin S-Y, Lai W-A, Hsu Y-H et al. Aquibacter zeaxanthinifaciens gen. nov., sp. nov., a zeaxanthin-producing bacterium of the family Flavobacteriaceae isolated from surface seawater, and emended descriptions of the genera Aestuariibaculum and Gaetbulibacter . Int J Syst Evol Microbiol 2014; 64:138–145 [View Article]
    [Google Scholar]
  48. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586 [View Article]
    [Google Scholar]
  49. Paisley R. MIS Whole Cell Fatty Acid Analysis by Gas Chromatography Training Manual Newark, DE: MIDI; 1996
    [Google Scholar]
  50. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  51. Scherer P, Kneifel H. Distribution of polyamines in methanogenic bacteria. J Bacteriol 1983; 154:1315–1322 [View Article]
    [Google Scholar]
  52. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  53. Collins MD. Isoprenoid quinone analysis in classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp 267–287
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004080
Loading
/content/journal/ijsem/10.1099/ijsem.0.004080
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error