1887

Abstract

A bacterial strain, designated GEM5, was isolated from sand soil samples from the Qinghai–Tibet Plateau. The polyphasic study confirmed the affiliation of the isolate with the genus . GEM5 had Gram-stain-negative, non-spore-forming and rod-shaped cells and grew at 4–30 °C, pH 6–8 and with 0–2 % (w/v) NaCl. Its cell wall contained ribose. Q8 was the predominant respiratory quinone, and summed feature 3 (Cω6/ω7) and C were the major components of the fatty acids. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unidentified phospholipid, an unidentified aminolipid and four unidentified lipids. The DNA G+C content was 65.1 mol%. The phylogenetic analysis based on the 16S rRNA gene showed a stable clade being formed by GEM5, CCUG 45783 (97.94 %) and CCUG 43427A (97.58 %). The average nucleotide identity (ANIb) values between GEM5 and CCUG 45783, CCUG 43427A were 91.3 and 91.7 %, respectively. On the basis of the morphological, physiological and chemotaxonomic pattern, it was proposed that strain GEM5 (=JCM 32744=CICC 24458) should be classified as representing a member of the genus with the name sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004056
2020-02-19
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2435.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004056&mimeType=html&fmt=ahah

References

  1. La Scola B, Birtles RJ, Mallet MN, Raoult D. Massilia timonae gen. nov., sp. nov., isolated from blood of an immunocompromised patient with cerebellar lesions. J Clin Microbiol 1998; 36:2847–2852 [CrossRef]
    [Google Scholar]
  2. Kämpfer P, Lodders N, Martin K, Falsen E. Revision of the genus Massilia La Scola et al. 2000, with an emended description of the genus and inclusion of all species of the genus Naxibacter as new combinations, and proposal of Massilia consociata sp. nov. Int J Syst Evol Microbiol 2011; 61:1528–1533 [CrossRef]
    [Google Scholar]
  3. Altankhuu K, Kim J. Massilia solisilvae sp. nov., Massilia terrae sp. nov. and Massilia agilis sp. nov., isolated from forest soil in South Korea by using a newly developed culture method. Int J Syst Evol Microbiol 2017; 67:3026–3032 [CrossRef]
    [Google Scholar]
  4. Chaudhary DK, Kim J. Massilia agri sp. nov., isolated from reclaimed grassland soil. Int J Syst Evol Microbiol 2017; 67:2696–2703 [CrossRef]
    [Google Scholar]
  5. Feng G-D, Yang S-Z, Li H-P, Zhu H-H. Massilia putida sp. nov., a dimethyl disulfide-producing bacterium isolated from wolfram mine tailing. Int J Syst Evol Microbiol 2016; 66:50–55 [CrossRef]
    [Google Scholar]
  6. Ren M, Li X, Zhang Y, Jin Y, Li S et al. Massilia armeniaca sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 2018; 68:2319–2324 [CrossRef]
    [Google Scholar]
  7. Rodríguez-Díaz M, Cerrone F, Sánchez-Peinado M, SantaCruz-Calvo L, Pozo C et al. Massilia umbonata sp. nov., able to accumulate poly-β-hydroxybutyrate, isolated from a sewage sludge compost-soil microcosm. Int J Syst Evol Microbiol 2014; 64:131–137 [CrossRef]
    [Google Scholar]
  8. Orthová I, Kämpfer P, Glaeser SP, Kaden R, Busse H-J. Massilia norwichensis sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2015; 65:56–64 [CrossRef]
    [Google Scholar]
  9. Weon H-Y, Kim B-Y, Son J-A, Jang HB, Hong SK et al. Massilia aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2008; 58:1422–1425 [CrossRef]
    [Google Scholar]
  10. Shen L, Liu Y, Gu Z, Xu B, Wang N et al. Massilia eurypsychrophila sp. nov. a facultatively psychrophilic bacteria isolated from ice core. Int J Syst Evol Microbiol 2015; 65:2124–2129 [CrossRef]
    [Google Scholar]
  11. Wang H, Zhang X, Wang S, Zhao B, Lou K et al. Massilia violaceinigra sp. nov., a novel purple-pigmented bacterium isolated from glacier permafrost. Int J Syst Evol Microbiol 2018; 68:2271–2278 [CrossRef]
    [Google Scholar]
  12. Sun L-N, Yang E-D, Cui D-X, Ni Y-W, Wang Y-B et al. Massilia buxea sp. nov., isolated from a rock surface. Int J Syst Evol Microbiol 2017; 67:4390–4396 [CrossRef]
    [Google Scholar]
  13. Gallego V, Sánchez-Porro C, García MT, Ventosa A. Massilia aurea sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 2006; 56:2449–2453 [CrossRef]
    [Google Scholar]
  14. Zhang B, Tang S, Chen X, Zhang L, Zhang G et al. Streptomyces lacrimifluminis sp. nov., a novel actinobacterium that produces antibacterial compounds, isolated from soil. Int J Syst Evol Microbiol 2016; 66:4981–4986 [CrossRef]
    [Google Scholar]
  15. Zhang B, Wu X, Zhang G, Li S, Zhang W et al. The diversity and biogeography of the communities of Actinobacteria in the forelands of glaciers at a continental scale. Environ Res Lett 2016; 11:054012 [CrossRef]
    [Google Scholar]
  16. Zhang B, Tang S, Yang R, Chen X, Zhang D et al. Streptomyces dangxiongensis sp. nov., isolated from soil of Qinghai-Tibet Plateau. Int J Syst Evol Microbiol 2019; 69:2729–2734 [CrossRef]
    [Google Scholar]
  17. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef]
    [Google Scholar]
  19. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [CrossRef]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef]
    [Google Scholar]
  21. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [CrossRef]
    [Google Scholar]
  22. Jukes TH, Cantor CR. Evolution of protein molecules. Mammalian Protein Metabolism 1969; 3:21–132
    [Google Scholar]
  23. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef]
    [Google Scholar]
  24. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [CrossRef]
    [Google Scholar]
  25. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef]
    [Google Scholar]
  26. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [CrossRef]
    [Google Scholar]
  27. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [CrossRef]
    [Google Scholar]
  28. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Brenner DJ, Grimont PAD et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
  29. Lee H, Kim D-U, Park S, Yoon J-H, Ka J-O. Massilia chloroacetimidivorans sp. nov., a chloroacetamide herbicide-degrading bacterium isolated from soil. Antonie Van Leeuwenhoek 2017; 110:751–758 [CrossRef]
    [Google Scholar]
  30. Zhang B, Tang S, Chen X, Zhang G, Zhang W et al. Streptomyces qaidamensis sp. nov., isolated from sand in the Qaidam Basin, China. J Antibiot 2018; 71:880–886 [CrossRef]
    [Google Scholar]
  31. Kurup PV, Schmitt JA. Numerical taxonomy of Nocardia . Can J Microbiol 1973; 19:1035–1048 [CrossRef]
    [Google Scholar]
  32. Kong BH, Li YH, Liu M, Liu Y, Li CL et al. Massilia namucuonensis sp. nov., isolated from a soil sample. Int J Syst Evol Microbiol 2013; 63:352–357 [CrossRef]
    [Google Scholar]
  33. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20:435–443 [CrossRef]
    [Google Scholar]
  34. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [CrossRef]
    [Google Scholar]
  35. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [CrossRef]
    [Google Scholar]
  36. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [CrossRef]
    [Google Scholar]
  37. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  38. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical Note 101. Newark, DE: MIDI; 1990
    [Google Scholar]
  39. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [CrossRef]
    [Google Scholar]
  40. Singh H, Du J, Won K, Yang J-E, Yin C et al. Massilia arvi sp. nov., isolated from fallow-land soil previously cultivated with Brassica oleracea, and emended description of the genus Massilia . Int J Syst Evol Microbiol 2015; 65:3690–3696 [CrossRef]
    [Google Scholar]
  41. Zhang Y-Q, Li W-J, Zhang K-Y, Tian X-P, Jiang Y et al. Massilia dura sp. nov., Massilia albidiflava sp. nov., Massilia plicata sp. nov. and Massilia lutea sp. nov., isolated from soils in China. Int J Syst Evol Microbiol 2006; 56:459–463 [CrossRef]
    [Google Scholar]
  42. Kämpfer P, Lodders N, Martin K, Falsen E. Massilia oculi sp. nov., isolated from a human clinical specimen. Int J Syst Evol Microbiol 2012; 62:364–369 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004056
Loading
/content/journal/ijsem/10.1099/ijsem.0.004056
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error