1887

Abstract

A gamma radiation-resistant and pink-pigmented bacterial strain, designated as 17Sr1-39, was isolated from a gamma ray-irradiated soil sample collected in the Republic of Korea. Cells were Gram-stain-negative, strictly aerobic, flagellated, asporogenous, rod-shaped and methylotrophic. Results of 16S rRNA gene sequence analysis showed that strain 17Sr1-39 was phylogenetically related to PR1016A (97.3 %), DSM 16371 (97.2 %), PMB02 (97.0 %), IER25-16 (96.6 %), 17Sr1-28 (96.6 %) and JCM 2833 (93.4 %). The G+C content calculated based on the genome sequence was 70.4 mol%. The average nucleotide identity and DNA–DNA hybridization values between strain 17Sr1-39 and , , , , and were 77.3–89.9 and 22–38.2 %, respectively. The predominant fatty acids were summed feature 8 (Cω7 and/or Cω6) and summed feature 3 (Cω7 and/or Cω6). The predominant quinone was ubiquinone 10 and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Based on the data from phenotypic tests and genotypic differences between strain 17Sr1-39 and its close phylogenetic relatives, strain 17Sr1-39 represented a new species belonging to the genus , for which the name sp. nov. (=KACC 52905=NBRC 112874) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004054
2020-02-25
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2449.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004054&mimeType=html&fmt=ahah

References

  1. Patt TE, Cole GC, Hanson RS. Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol 1976; 26:226–229 [CrossRef]
    [Google Scholar]
  2. Green PN, Bousfield IJ. Emendation of Methylobacterium Patt, Cole, and Hanson 1976; Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito and Iizuka 1971) comb. nov. corrig.; and Methylobacterium mesophilicum (Austin and Goodfellow 1979) comb. nov. Int J Syst Bacteriol 1983; 33:875–877 [CrossRef]
    [Google Scholar]
  3. Green PN, Ardley JK. Review of the genus Methylobacterium and closely related organisms: a proposal that some Methylobacterium species be reclassified into a new genus, Methylorubrum gen. nov. Int J Syst Evol Microbiol 2018; 68:2727–2748 [CrossRef]
    [Google Scholar]
  4. Chen WM, Cai CY, Li ZH, Young CC, Sheu SY. Methylobacterium oryzihabitans sp. nov, isolated from water sampled from a rice paddy field. Int J Syst Evol Microbiol 2019; 69:3843–3850 [CrossRef]
    [Google Scholar]
  5. Green P. The genus Methylobacterium . The prokaryotes 1992
    [Google Scholar]
  6. Aslam Z, Lee CS, Kim KH, Im W-T, Ten LN et al. Methylobacterium jeotgali sp. nov., a non-pigmented, facultatively methylotrophic bacterium isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2007; 57:566–571 [CrossRef]
    [Google Scholar]
  7. Kang YS, Kim J, Shin HD, Nam Y-D, Bae J-W et al. Methylobacterium platani sp. nov., isolated from a leaf of the tree Platanus orientalis. Int J Syst Evol Microbiol 2007; 57:2849–2853 [CrossRef]
    [Google Scholar]
  8. Kato Y, Asahara M, Goto K, Kasai H, Yokota A. Methylobacterium persicinum sp. nov., Methylobacterium komagatae sp. nov., Methylobacterium brachiatum sp. nov., Methylobacterium tardum sp. nov. and Methylobacterium gregans sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 2008; 58:1134–1141 [CrossRef]
    [Google Scholar]
  9. Weon H-Y, Kim B-Y, Joa J-H, Son J-A, Song M-H et al. Methylobacterium iners sp. nov. and Methylobacterium aerolatum sp. nov., isolated from air samples in Korea. Int J Syst Evol Microbiol 2008; 58:93–96 [CrossRef]
    [Google Scholar]
  10. Kim J, Chhetri G, Kim I, Kim H, Kim MK et al. Methylobacterium terrae sp. nov. a radiation-resistant bacterium isolated from gamma ray-irradiated soil. J Microbiol 2019; 57:959–966 [CrossRef]
    [Google Scholar]
  11. Hornei B, Lüneberg E, Schmidt-Rotte H, Maass M, Weber K et al. Systemic infection of an immunocompromised patient with Methylobacterium zatmanii . J Clin Microbiol 1999; 37:248–250 [CrossRef]
    [Google Scholar]
  12. Truant AL, Gulati R, Giger O, Satishchandran V, Caya JG. Methylobacterium Species: an increasingly important opportunistic pathogen. Lab Med 1998; 29:704–710 [CrossRef]
    [Google Scholar]
  13. Ito H, Iizuka H. Taxonomic studies on a radio-resistant Pseudomonas part XII. Studies on the microorganisms of cereal grain. Agric Biol Chem 1971; 35:1566–1571
    [Google Scholar]
  14. Srinivasan S, Lee S-Y, Kim MK, Jung H-Y. Complete genome sequence of Hymenobacter sp. DG25A, a gamma radiation-resistant bacterium isolated from soil. Mol. Cell. Toxicol. 2017; 13:65–72 [CrossRef]
    [Google Scholar]
  15. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985; 49:77 [CrossRef]
    [Google Scholar]
  16. Chhetri G, Kim J, Kim I, Kim MK, Seo T. Runella soli sp. nov., isolated from garden soil. Antonie van Leeuwenhoek 2019; 112:1245–1252 [CrossRef]
    [Google Scholar]
  17. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [CrossRef]
    [Google Scholar]
  18. Yoon S-H, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef]
    [Google Scholar]
  19. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [CrossRef]
    [Google Scholar]
  20. Saitou N, Nei M, Masatoshi N. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef]
    [Google Scholar]
  22. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [CrossRef]
    [Google Scholar]
  23. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [CrossRef]
    [Google Scholar]
  24. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75–15 [CrossRef]
    [Google Scholar]
  25. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000; 28:33–36 [CrossRef]
    [Google Scholar]
  26. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [CrossRef]
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef]
    [Google Scholar]
  28. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [CrossRef]
    [Google Scholar]
  29. Chistoserdova L, Lidstrom ME. Aerobic methylotrophic prokaryotes. The Prokaryotes: Prokaryotic Physiology and Biochemistry 2013
    [Google Scholar]
  30. Chistoserdova L. Minireview modularity of methylotrophy. Revisited 2011; 13:2603–2622
    [Google Scholar]
  31. Schauer S, Kämpfer P, Wellner S, Spröer C, Kutschera U. Methylobacterium marchantiae sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the thallus of a liverwort. Int J Syst Evol Microbiol 2011; 61:870–876 [CrossRef]
    [Google Scholar]
  32. Madhaiyan M, Poonguzhali S, Senthilkumar M, Lee JS, Lee KC. Methylobacterium gossipiicola sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the cotton phyllosphere. Int J Syst Evol Microbiol 2012; 62:162–167 [CrossRef]
    [Google Scholar]
  33. Wellner S, Lodders N, Kämpfer P. Methylobacterium cerastii sp. nov., isolated from the leaf surface of Cerastium holosteoides. Int J Syst Evol Microbiol 2012; 62:917–924 [CrossRef]
    [Google Scholar]
  34. Wellner S, Lodders N, Glaeser SP, Kämpfer P. Methylobacterium trifolii sp. nov. and Methylobacterium thuringiense sp. nov., methanol-utilizing, pink-pigmented bacteria isolated from leaf surfaces. Int J Syst Evol Microbiol 2013; 63:2690–2699 [CrossRef]
    [Google Scholar]
  35. Madhaiyan M, Poonguzhali S. Methylobacterium pseudosasae sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the bamboo phyllosphere. Antonie van Leeuwenhoek 2014; 105:367–376 [CrossRef]
    [Google Scholar]
  36. Beck DAC, McTaggart TL, Setboonsarng U, Vorobev A, Goodwin L et al. Multiphyletic origins of methylotrophy in Alphaproteobacteria, exemplified by comparative genomics of lake Washington isolates. Environ Microbiol 2015; 17:547–554 [CrossRef]
    [Google Scholar]
  37. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef]
    [Google Scholar]
  38. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [CrossRef]
    [Google Scholar]
  39. Cox MM, Battista JR. Deinococcus radiodurans - the consummate survivor. Nat Rev Microbiol 2005; 3:882–892 [CrossRef]
    [Google Scholar]
  40. Zimmerman JM, Battista JR. 32 measuring survival in microbial populations following exposure to ionizing radiation. Methods Microbiol 2006; 35:745–754
    [Google Scholar]
  41. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [CrossRef]
    [Google Scholar]
  42. Kim I, Choi J, Chhetri G, Seo T. Lysobacter helvus sp. nov. and Lysobacter xanthus sp. nov., isolated from Soil in South Korea. Antonie van Leeuwenhoek 2019; 112:1253–1262 [CrossRef]
    [Google Scholar]
  43. Breznak JA, Costilow RN. Physicochemical Factors in Growth. Methods for General and Molecular Microbiology, 3rd ed. 2014
    [Google Scholar]
  44. Krieg NR, Smibert RA, Sikorski J, Tindall BJ. Phenotypic Characterization and the Principles of Comparative Systematics. Methods for General and Molecular Microbiology, 3rd ed. American Society of Microbiology; 2014 pp 330–393
    [Google Scholar]
  45. Sasser M. Midi Scherlock Microbial Identification System 101, MIDI Inc Tech note. 2009 pp 1–6
    [Google Scholar]
  46. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354 [CrossRef]
    [Google Scholar]
  47. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  48. Komagata K, Suzuki KI. 4 lipid and cell-wall analysis in bacterial Systematics. Methods Microbiol 1988; 19:161–207
    [Google Scholar]
  49. Chhetri G, Kim J, Kim I, Kim MK, Seo T. Pontibacter chitinilyticus sp. nov., a novel chitin-hydrolysing bacterium isolated from soil. Antonie Van Leeuwenhoek 2019; 112:1011–1018 [CrossRef]
    [Google Scholar]
  50. Park C, Lee YS, Park S-Y, Park W. Methylobacterium currus sp. nov., isolated from a car air conditioning system. Int J Syst Evol Microbiol 2018; 68:3621–3626 [CrossRef]
    [Google Scholar]
  51. Gallego V, García MT, Ventosa A. Methylobacterium hispanicum sp. nov. and Methylobacterium aquaticum sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 2005; 55:281–287 [CrossRef]
    [Google Scholar]
  52. Lee Y, Jeon CO. Methylobacterium frigidaeris sp. nov., isolated from an air conditioning system. Int J Syst Evol Microbiol 2018; 68:299–304 [CrossRef]
    [Google Scholar]
  53. Patt TE, Cole GC, Bland J, Hanson RS. Isolation and characterization of bacteria that grow on methane and organic compounds as sole sources of carbon and energy. J Bacteriol 1974; 120:955–964 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004054
Loading
/content/journal/ijsem/10.1099/ijsem.0.004054
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error