1887

Abstract

The 16S rRNA gene sequences of L9-754 and B093034 possess 99.71 % sequence similarity. Further studies were undertaken to clarify the taxonomic assignments of these species. Whole-genome comparisons showed that B093034and L9-754 shared 96.9 % average nucleotide identity, 98.4 % average amino acid identity and 76.1 % digital DNA–DNA hybridization values. These values exceeded or approached the recommended species delineation threshold values. Furthermore, a phylogenetic tree based on 41 of the most conserved genes provided additional evidence that B093034 and L9-754 are very closely related. Based on this evidence we propose the reclassification of Xue . 2018 as a later heterotypic synonym of Madhaiyan . 2017.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004045
2020-02-13
2020-02-23
Loading full text...

Full text loading...

References

  1. Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I et al. Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol 2002;52:1485–1496 [CrossRef]
    [Google Scholar]
  2. Yabuuchi E, Kosako Y.Genus Sphingomonas In Yabuuchi E, Kosako Y, Sphingomonas Genus, In Garrity GM, Brenner DJ. (editors) The Proteobacteria: Part –C, The Alpha, Beta, Delta and Epsilonproteobacteria, Bergey’s manual of Systematic Bacteriology, 2nd edn. Springer; 2004; pp234–2557
    [Google Scholar]
  3. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the bacteria and archaea. Int J Syst Evol Microbiol 2014;64:316–324 [CrossRef]
    [Google Scholar]
  4. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009;106:19126–19131 [CrossRef]
    [Google Scholar]
  5. Feng G-D, Wang D-D, Yang S-Z, Li H-P, Zhu H-H. Genome-Based reclassification of Sphingopyxis ummariensis as a later heterotypic synonym of Sphingopyxis terrae, with the descriptions of Sphingopyxis terrae subsp. terrae subsp. nov. and Sphingopyxis terrae subsp. ummariensis subsp. nov. Int J Syst Evol Microbiol 2017;67:5279–5283 [CrossRef]
    [Google Scholar]
  6. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef]
    [Google Scholar]
  7. Beukes CW, Palmer M, Manyaka P, Chan WY, Avontuur JR et al. Genome data provides high support for generic boundaries in Burkholderia sensu lato. Front Microbiol 2017;8:1154 [CrossRef]
    [Google Scholar]
  8. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009;25:1972–1973 [CrossRef]
    [Google Scholar]
  9. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015;32:268–274 [CrossRef]
    [Google Scholar]
  10. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017;14:587–589 [CrossRef]
    [Google Scholar]
  11. Blom J, Albaum SP, Doppmeier D, Pühler A, Vorhölter F-J et al. EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinformatics 2009;10:154 [CrossRef]
    [Google Scholar]
  12. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef]
    [Google Scholar]
  13. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. Dna-Dna hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef]
    [Google Scholar]
  14. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E et al. Microbial genomic taxonomy. BMC Genomics 2013;14:913 [CrossRef]
    [Google Scholar]
  15. Kaur J, Anand S, Verma M, Lal R. Role of horizontal gene transfer events in the evolution of phenol 2-monooxygenase gene: a comparative study across 75 prokaryotic genomes. Indian Journal of Bioinformatics and Biotechnology 2014;3:1–15
    [Google Scholar]
  16. Xue H, Piao C-gen, Wang X-zhuo, Lin C-li, Guo M-wei et al. Sphingomonas aeria sp. nov., isolated from air. Int J Syst Evol Microbiol 2018;68:2866–2871 [CrossRef]
    [Google Scholar]
  17. Madhaiyan M, Alex THH, Cho H, Kim S-J, Weon H-Y et al. Sphingomonas jatrophae sp. nov. and Sphingomonas carotinifaciens sp. nov., two yellow-pigmented endophytes isolated from stem tissues of Jatropha curcas L. Int J Syst Evol Microbiol 2017;67:5150–5158 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004045
Loading
/content/journal/ijsem/10.1099/ijsem.0.004045
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error