1887

Abstract

A novel thermotolerant bacterial strain was isolated from a hot spring in a Tibetan geothermal field. Phylogenetic analysis of the 16S rRNA gene sequence of the novel strain showed that it belongs to a distinct lineage far from any known taxa. The new isolate shared the highest pairwise sequence identity with S-12 (92.8 % similarity) according to the 16S rRNA gene sequences. Cells were Gram-stain-negative, aerobic, rod-shaped and formed white round colonies. The strain grew at the ranges of 28–45 °C (optimum, 37 °C), pH 5.0–7.0 (optimum, pH 6.0) and 0–2 % NaCl. The strain was positive for catalase and oxidase. The major respiratory quinone was ubiquinone Q-10. Polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine. The major fatty acids were summed feature 8 (C ω7 and/or C ω6). The DNA G+C content was 68.3 mol%. Based on these distinguishing properties, this strain is proposed to represent a new species of a new genus gen. nov., sp. nov., within a new family fam. nov. The type strain of the type species of is SYSU G02060 (=KCTC 72351=CGMCC 1.17070).

Funding
This study was supported by the:
  • Science and Technology Program of Guangzhou, China (Award 201803030030)
    • Principle Award Recipient: Wen-Jun Li
  • National Natural Science Foundation of China (Award 31670009)
    • Principle Award Recipient: Wen-Jun Li
  • National Natural Science Foundation of China (Award 91951205)
    • Principle Award Recipient: Wen-Jun Li
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004035
2020-02-11
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2298.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004035&mimeType=html&fmt=ahah

References

  1. Leifson E. Atlas of Bacterial Flagellation New York: Academic Press; 1960
    [Google Scholar]
  2. Xu P et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article]
    [Google Scholar]
  3. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703–704 [View Article]
    [Google Scholar]
  4. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  5. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article]
    [Google Scholar]
  6. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  7. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  8. WJ L, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Evol Microbiol 2007; 57:1424–1428
    [Google Scholar]
  9. Thompson J, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article]
    [Google Scholar]
  10. Saitou N, Nei M. The neighbor–joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425
    [Google Scholar]
  11. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  12. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  13. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  14. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  15. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  16. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article]
    [Google Scholar]
  17. Wu M, Scott AJ. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinform 2012; 28:1033–1034 [View Article]
    [Google Scholar]
  18. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article]
    [Google Scholar]
  19. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [View Article]
    [Google Scholar]
  20. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [View Article]
    [Google Scholar]
  21. Kim S-J, Ahn J-H, Heo J, Cho H, Weon H-Y et al. Phreatobacter cathodiphilus sp. nov., isolated from a cathode of a microbial fuel cell. Int J Syst Evol Microbiol 2018; 68:2855–2859 [View Article]
    [Google Scholar]
  22. Lee SD, Joung Y, Cho J-C. Phreatobacter stygius sp. nov., isolated from pieces of wood in a lava cave and emended description of the genus Phreatobacter . Int J Syst Evol Microbiol 2017; 67:3296–3300 [View Article]
    [Google Scholar]
  23. Tόth EM, Vengring A, Homonnay ZG, Kéki Z, Spröer C et al. Phreatobacter oligotrophus gen. nov., sp. nov., an alphaproteobacterium isolated from ultrapure water of the water purification system of a power plant. Int J Syst Evol Microbiol 2014; 64:839–845 [View Article]
    [Google Scholar]
  24. Das SK, Mishra AK, Tindall BJ, Rainey FA, Stackebrandt E. Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans. (strain BI-42) gen. nov., sp. nov.: analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. Int J Syst Bacteriol 1996; 46:981–987 [View Article]
    [Google Scholar]
  25. De Meyer SE, Willems A. Multilocus sequence analysis of Bosea species and description of Bosea lupini sp. nov., Bosea lathyri sp. nov. and Bosea robiniae sp. nov., isolated from legumes. Int J Syst Evol Microbiol 2012; 62:2505–2510 [View Article]
    [Google Scholar]
  26. Kanso S, Petel BKC. Microvirga subterranea gen. nov., sp. nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 2003; 53:401–406 [View Article]
    [Google Scholar]
  27. Weon H-Y, Kwon S-W, Son J-A, Jo E-H, Kim S-J et al. Description of Microvirga aerophila sp. nov. and Microvirga aerilata sp. nov., isolated from air, reclassification of Balneimonas flocculans Takeda et al. 2004 as Microvirga flocculans comb. nov. and emended description of the genus Microvirga . Int J Syst Evol Microbiol 2010; 60:2596–2600 [View Article]
    [Google Scholar]
  28. Dedysh SN, Haupt ES, Dunfield PF. Emended description of the family Beijerinckiaceae and transfer of the genera Chelatococcus and Camelimonas to the family Chelatococcaceae fam. nov. Int J Syst Evol Microbiol 2016; 66:3177–3182 [View Article]
    [Google Scholar]
  29. Dedysh SN, Belova SE, Bodelier PLE, Smirnova KV, Khmelenina VN et al. Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing 'signature' fatty acids of type I methanotrophs. Int J Syst Evol Microbiol 2007; 57:472–479 [View Article]
    [Google Scholar]
  30. Hiraishi A. Characterization of thermotolerant phototrophic bacteria, Rhodoplanes tepidicaeni sp. nov. and Rhodoplanes azumiensis sp. nov., isolated from a geothermal spring. Int J Syst Evol Microbiol 2017; 67:5038–5045 [View Article]
    [Google Scholar]
  31. Hiraishi A, Ueda Y. Rhodoplanes gen. nov., a new genus of phototrophic bacteria including Rhodopseudomonas rosea as Rhodoplanes roseus comb. nov. and Rhodoplanes elegans sp. nov. Int J Syst Bacteriol 1994; 44:665–673 [View Article]
    [Google Scholar]
  32. Hiraishi A, Urata K, Satoh T. A new genus of marine budding phototrophic bacteria, Rhodobium gen. nov., which includes Rhodobium orientis sp. nov. and Rhodobium marinum comb. nov. Int J Syst Bacteriol 1995; 45:226–234 [View Article]
    [Google Scholar]
  33. Wiegel J, Wilke D, Baumgarten J, OPITZ R, Schlegel HG et al. Transfer of the nitrogen-fixing hydrogen bacterium Corynebacterium autotrophicum Baumgarten et al. to Xanthobacter gen. nov. Int J Syst Bacteriol 1978; 28:573–581 [View Article]
    [Google Scholar]
  34. Garrity GM, Bell JA, Lilburn T. Genus XX. Xanthobacter . In Wiegel Jürgen K.W. editor Bergey's Manual of Systematic Bacteriology, 2nd edn, part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) 2 New York: Springer; 2005 pp 555–561
    [Google Scholar]
  35. DS A, WT I, Yang HC, Lee ST. Shinella granuli gen. nov., sp. nov., and proposal of the reclassification of Zoogloea ramigera ATCC 19623 as Shinella zoogloeoides sp. nov. Int J Syst Evol Microbiol 2006; 56:443–448
    [Google Scholar]
  36. Mantelin S et al. Emended description of the genus Phyllobacterium and description of four novel species associated with plant roots: Phyllobacterium bourgognense sp. nov., Phyllobacterium ifriqiyense sp. nov., Phyllobacterium leguminum sp. nov. and Phyllobacterium brassicacearum sp. nov. Int J Syst Evol Microbiol 2006; 56:827–839 [View Article]
    [Google Scholar]
  37. Garrity GM, Bell JA, Lilburn T. Genus I. Phyllobacterium . In Mergaert Joris, Swings Jeans. (editors) Bergey's Manual of Systematic Bacteriology, 2nd edn, part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) 2 New York: Springer; 2005 pp 394–396
    [Google Scholar]
  38. Sun L-N, Wei J-C, Han G-M, Tang X-Y, Cao Y-Y et al. Caulobacter flavus sp. nov., a stalked bacterium isolated from rhizosphere soil. Int J Syst Evol Microbiol 2015; 65:4374–4380 [View Article]
    [Google Scholar]
  39. Garrity GM, Bell JA, Lilburn T. Genus I. Caulobacter . In Mergaert Joris, Swings Jeans. (editors) Bergey's Manual of Systematic Bacteriology, 2nd edn, part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) 2 New York: Springer; 2005 pp 281–303
    [Google Scholar]
  40. Kim KK, Lee KC, Eom MK, Kim J-S, Kim D-S et al. Variibacter gotjawalensis gen. nov., sp. nov., isolated from soil of a lava forest. Antonie van Leeuwenhoek 2014; 105:915–924 [View Article]
    [Google Scholar]
  41. Huang Z, Lai Q. Mabikibacter ruber Choi et al. 2017 is a later heterotypic synonym of Notoacmeibacter marinus Huang et al. 2017. Int J Syst Evol Microbiol 2019 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004035
Loading
/content/journal/ijsem/10.1099/ijsem.0.004035
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error