1887

Abstract

The genus in the family is known to be polyphyletic. Amino acid identity (AAI) values were calculated from whole-genome sequences of species of the genus and their distribution was found to be multi-modal. These naturally-occurring non-continuities were leveraged to standardise genus assignment of these species. We speculate that this multi-modal distribution is a consequence of loss of biodiversity during major extinction events, leading to the concept that a bacterial genus corresponds to a set of species that diversified since the Permian extinction. Transfer of nine species (, , and ) to the genus and eleven (, , , , , , , , and ) to the genus is proposed. Two novel species are described: sp. nov. and sp. nov. Evidence is presented to support the assignment of to a genus apart from to which comb nov. also belongs. The novel genus is proposed, to contain the type species comb. nov., along with comb. nov., and comb. nov.

Funding
This study was supported by the:
  • National Science Foundation (US) (Award 0960114)
    • Principle Award Recipient: Jeffrey D. Newman
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003935
2020-01-02
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/8/4432.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003935&mimeType=html&fmt=ahah

References

  1. Vandamme P, Bernardet JF, Segers P, Kersters K, Holmes B. New perspectives in the classification of the Flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 1994; 44:827–831 [View Article]
    [Google Scholar]
  2. Holmes B, Steigerwalt AG, Weaver RE, Brenner DJ. Weeksella zoohelcum sp. nov. (Formerly group IIj), from human clinical specimens. Syst Appl Microbiol 1986; 8:191–196 [View Article]
    [Google Scholar]
  3. Lustig A. Diagnostica Dei Batteri Delle Acque: Con Una Guida Alle Ricerche Batteriologiche E Microscopiche Rosenberg & Sellier; 1890
    [Google Scholar]
  4. Prévot AR. Traité De Systématique Bactérienne Paris: Dunod; 1961
    [Google Scholar]
  5. Kim MK, WT I, Shin YK, Kim SH, Lee BC et al. Kaistella koreensis gen. nov., sp. nov., a novel member of the Chryseobacterium–Bergeyella–Riemerella branch. Int J Syst Evol Microbiol 2004; 54:2319–2324 [View Article]
    [Google Scholar]
  6. Kim KK, Kim MK, Lim JH, Park HY, Lee ST. Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov. Int J Syst Evol Microbiol 2005; 55:1287–1293 [View Article]
    [Google Scholar]
  7. Yi H, Yoon HI, Chun J. Sejongia antarctica gen. nov., sp. nov. and Sejongia jeonii sp. nov., isolated from the Antarctic. Int J Syst Evol Microbiol 2005; 55:409–416 [View Article][PubMed]
    [Google Scholar]
  8. Lee K, Lee HK, Choi TH, Cho JC. Sejongia marina sp. nov., isolated from Antarctic seawater. Int J Syst Evol Microbiol 2007; 57:2917–2921 [View Article][PubMed]
    [Google Scholar]
  9. Kämpfer P, Lodders N, Vaneechoutte M, Wauters G. Transfer of Sejongia antarctica, Sejongia jeonii and Sejongia marina to the genus Chryseobacterium as Chryseobacterium antarcticum comb. nov., Chryseobacterium jeonii comb. nov. and Chryseobacterium marinum comb. nov. Int J Syst Evol Microbiol 2009; 59:2238–2240 [View Article][PubMed]
    [Google Scholar]
  10. Kämpfer P, Vaneechoutte M, Lodders N, De Baere T, Avesani V et al. Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium . Int J Syst Evol Microbiol 2009; 59:2421–2428 [View Article][PubMed]
    [Google Scholar]
  11. Peng F, Liu M, Zhang L, Dai J, Luo X et al. Planobacterium taklimakanense gen. nov., sp. nov., a member of the family Flavobacteriaceae that exhibits swimming motility, isolated from desert soil. Int J Syst Evol Microbiol 2009; 59:1672–1678 [View Article]
    [Google Scholar]
  12. Holmes B, Steigerwalt AG, Nicholson AC. DNA–DNA hybridization study of strains of Chryseobacterium, Elizabethkingia and Empedobacter and of other usually indole-producing non-fermenters of CDC groups IIc, IIe, IIh and IIi, mostly from human clinical sources, and proposals of Chryseobacterium bernardetii sp. nov., Chryseobacterium carnis sp. nov., Chryseobacterium lactis sp. nov., Chryseobacterium nakagawai sp. nov. and Chryseobacterium taklimakanense comb. nov. Int J Syst Evol Microbiol 2013; 63:4639–4662 [View Article]
    [Google Scholar]
  13. O'Sullivan LA, Rinna J, Humphreys G, Weightman AJ, Fry JC. Culturable phylogenetic diversity of the phylum 'Bacteroidetes' from river epilithon and coastal water and description of novel members of the family Flavobacteriaceae: Epilithonimonas tenax gen. nov., sp. nov. and Persicivirga xylanidelens gen. nov., sp. nov. Int J Syst Evol Microbiol 2006; 56:169–180 [View Article]
    [Google Scholar]
  14. Feng H, Zeng Y, Huang Y. Epilithonimonas xixisoli sp. nov., isolated from wetland bank-side soil. Int J Syst Evol Microbiol 2014; 64:4155–4159 [View Article]
    [Google Scholar]
  15. Hoang V-A, Kim Y-J, Ponnuraj SP, Nguyen N-L, Hwang K-H et al. Epilithonimonas ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2015; 65:122–128 [View Article]
    [Google Scholar]
  16. Ge L, Zhao Q, Sheng H, Wu J, An L. Epilithonimonas psychrotolerans sp. nov., isolated from alpine permafrost. Int J Syst Evol Microbiol 2015; 65:3777–3781 [View Article]
    [Google Scholar]
  17. Shakéd T, Hantsis-Zacharov E, Halpern M. Epilithonimonas lactis sp. nov., isolated from raw cow's milk. Int J Syst Evol Microbiol 2010; 60:675–679 [View Article][PubMed]
    [Google Scholar]
  18. Hahnke RL, Meier-Kolthoff JP, Garcia-Lopez M, Mukherjee S, Huntemann M et al. Genome-based taxonomic classification of Bacteroidetes . Front Microbiol 2003; 2016:7
    [Google Scholar]
  19. Holmes B, Steigerwalt AG, Weaver RE, Brenner DJ. Weeksella virosa gen. nov., sp. nov. (formerly group IIF), found in human clinical specimens. Syst Appl Microbiol 1986; 8:185–190 [View Article]
    [Google Scholar]
  20. Sankar SA, Lo CI, Fall B, Sambe-Ba B, Mediannikov O et al. Noncontiguous finished genome sequence and description of Weeksella massiliensis sp. nov. New Microbes New Infect 2015; 8:89–98 [View Article][PubMed]
    [Google Scholar]
  21. Segers P, Mannheim W, Vancanneyt M, De Brandt K, Hinz KH et al. Riemerella anatipestifer gen. nov., comb. nov., the causative agent of septicemia anserum exsudativa, and its phylogenetic affiliation within the Flavobacterium–Cytophaga rRNA homology group. Int J Syst Bacteriol 1993; 43:768–776 [View Article]
    [Google Scholar]
  22. Vancanneyt M, Vandamme P, Segers P, Torck U, Coopman R et al. Riemerella columbina sp. nov., a bacterium associated with respiratory disease in pigeons. Int J Syst Bacteriol 1999; 49:289–295 [View Article]
    [Google Scholar]
  23. Bocklisch H, Hühn F, Herold W, Tomaso H, Diller R et al. Ostrich – a new avian host of Riemerella columbina . Vet Microbiol 2012; 154:429–431 [View Article]
    [Google Scholar]
  24. Rubbenstroth D, Ryll M, Hotzel H, Christensen H, Knobloch JK-M et al. Description of Riemerella columbipharyngis sp. nov., isolated from the pharynx of healthy domestic pigeons (Columba livia f. domestica), and emended descriptions of the genus Riemerella, Riemerella anatipestifer and Riemerella columbina . Int J Syst Evol Microbiol 2013; 63:280–287 [View Article]
    [Google Scholar]
  25. Kämpfer P, Avesani V, Janssens M, Charlier J, De Baere T. Description of Wautersiella falsenii gen. nov., sp. nov., to accommodate clinical isolates phenotypically resembling members of the genera Chryseobacterium and Empedobacter . Int J Syst Evol Microbiol 2006; 56:2323–2329 [View Article]
    [Google Scholar]
  26. Zhang R-G, Tan X, Liang Y, Meng T-Y, Liang H-Z et al. Description of Chishuiella changwenlii gen. nov., sp. nov., isolated from freshwater, and transfer of Wautersiella falsenii to the genus Empedobacter as Empedobacter falsenii comb. nov. Int J Syst Evol Microbiol 2014; 64:2723–2728
    [Google Scholar]
  27. Joung Y, Song J, Lee K, Oh H-M, Joh K et al. Soonwooa buanensis gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from seawater. Int J Syst Evol Microbiol 2010; 60:2061–2065 [View Article]
    [Google Scholar]
  28. Yassin AF, Inglis TJJ, Hupfer H, Siering C, Schumann P et al. Cruoricaptor ignavus gen. nov., sp. nov., a novel bacterium of the family Flavobacteriaceae isolated from blood culture of a man with bacteraemia. Syst Appl Microbiol 2012; 35:421–426 [View Article]
    [Google Scholar]
  29. Siddiqi MZ, Choi GM, Kim MS, Im W-T. Daejeonia ginsenosidivorans gen. nov., sp. nov., a ginsenoside-transforming bacterium isolated from lake water. Int J Syst Evol Microbiol 2017; 67:2665–2671 [View Article][PubMed]
    [Google Scholar]
  30. García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T et al. Analysis of 1,000 type-strain genomes improves taxonomic classification of Bacteroidetes . Frontiers in Microbiology 2019; 10:2083
    [Google Scholar]
  31. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  32. Nicholson AC, Gulvik CA, Whitney AM, Humrighouse BW, Graziano J et al. Revisiting the taxonomy of the genus Elizabethkingia using whole-genome sequencing, optical mapping, and MALDI-TOF, along with proposal of three novel Elizabethkingia species: Elizabethkingia bruuniana sp. nov., Elizabethkingia ursingii sp. nov., and Elizabethkingia occulta sp. nov. Antonie van Leeuwenhoek 2018; 111:55–72 [View Article]
    [Google Scholar]
  33. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article]
    [Google Scholar]
  34. Goris J, Klappenbach JA, Vandamme P, Coenye T, Konstantinidis KT et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  35. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015; 43:6761–6771 [View Article]
    [Google Scholar]
  36. Garrity GM. A new genomics-driven taxonomy of bacteria and archaea: are we there yet?. J Clin Microbiol 2016; 54:1956–1963 [View Article]
    [Google Scholar]
  37. Whitman WB. Genome sequences as the type material for taxonomic descriptions of prokaryotes. Syst Appl Microbiol 2015; 38:217–222 [View Article][PubMed]
    [Google Scholar]
  38. Christensen H, Bisgaard M, Frederiksen W, Mutters R, Kuhnert P et al. Is characterization of a single isolate sufficient for valid publication of a new genus or species? proposal to modify recommendation 30b of the Bacteriological Code (1990 revision). Int J Syst Evol Microbiol 2001; 51:2221–2225 [View Article]
    [Google Scholar]
  39. Hugo C, Bernardet JF, Nicholson A, Kämpfer P. Chryseobacterium . In Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J et al. (editors) Bergey's Manual of Systematics of Archaea and Bacteria 2019
    [Google Scholar]
  40. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article]
    [Google Scholar]
  41. Brenner DJ, McWhorter AC, Knutson JK, Steigerwalt AG. Escherichia vulneris: a new species of Enterobacteriaceae associated with human wounds. J Clin Microbiol 1982; 15:1133–1140
    [Google Scholar]
  42. Holmes B, Lapage SP, Malnick H. Strains of Pseudomonas putrefaciens from clinical material. J Clin Pathol 1975; 28:149–155 [View Article]
    [Google Scholar]
  43. Villarma A, Gulvik CA, Rowe LA, Sheth M, Juieng P et al. Twelve complete reference genomes of clinical isolates in the Capnocytophaga genus. Genome Announc 2017; 5: [View Article]
    [Google Scholar]
  44. Nicholson AC, Whitney AM, Emery BD, Bell ME, Gartin JT et al. Complete genome sequences of four strains from the 2015-2016 Elizabethkingia anophelis outbreak. Genome Announc 2016; 4: [View Article]
    [Google Scholar]
  45. Stropko SJ, Pipes SE, Newman JD. Genome-based reclassification of Bacillus cibi as a later heterotypic synonym of Bacillus indicus and emended description of Bacillus indicus . Int J Syst Evol Microbiol 2014; 64:3804–3809 [View Article]
    [Google Scholar]
  46. Buonaccorsi VP, Boyle MD, Grove D, Praul C, Sakk E et al. GCAT-SEEKquence: genome consortium for active teaching of undergraduates through increased faculty access to next-generation sequencing data. CBE Life Sci Educ 2011; 10:342–345 [View Article]
    [Google Scholar]
  47. Buonaccorsi V, Peterson M, Lamendella G, Newman J, Trun N et al. Vision and change through the genome consortium for active teaching using next-generation sequencing (GCAT-SEEK). CBE Life Sci Educ 2014; 13:1–2 [View Article]
    [Google Scholar]
  48. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  49. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article]
    [Google Scholar]
  50. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  51. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article]
    [Google Scholar]
  52. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  53. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article]
    [Google Scholar]
  54. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article]
    [Google Scholar]
  55. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary?. J Comput Biol 2010; 17:337–354 [View Article][PubMed]
    [Google Scholar]
  56. Bodilis J, Nsigue-Meilo S, Besaury L, Quillet L. Variable copy number, intra-genomic heterogeneities and lateral transfers of the 16S rRNA gene in Pseudomonas . PLoS One 2012; 7:e35647 [View Article]
    [Google Scholar]
  57. Chen J, Miao X, Xu M, He J, Xie Y et al. Intra-genomic heterogeneity in 16S rRNA genes in strictly anaerobic clinical isolates from periodontal abscesses. PLoS One 2015; 10:e0130265 [View Article]
    [Google Scholar]
  58. Walcher M, Skvoretz R, Montgomery-Fullerton M, Jonas V, Brentano S. Description of an unusual Neisseria meningitidis isolate containing and expressing Neisseria gonorrhoeae-specific 16S rRNA gene sequences. J Clin Microbiol 2013; 51:3199–3206 [View Article]
    [Google Scholar]
  59. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
  60. Shimomura K, Kaji S, Hiraishi A. Chryseobacterium shigense sp. nov., a yellow-pigmented, aerobic bacterium isolated from a lactic acid beverage. Int J Syst Evol Microbiol 2005; 55:1903–1906 [View Article]
    [Google Scholar]
  61. Charimba G, Jooste P, Albertyn J, Hugo C. Chryseobacterium carnipullorum sp. nov., isolated from raw chicken. Int J Syst Evol Microbiol 2013; 63:3243–3249 [View Article]
    [Google Scholar]
  62. De Ley J. Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 1970; 101:738–754
    [Google Scholar]
  63. Huss VAR, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4:184–192 [View Article]
    [Google Scholar]
  64. Kim T, Kim M, Kang O, Jiang F, Chang X et al. Chryseobacterium frigidum sp. nov., isolated from high-Arctic tundra soil, and emended descriptions of Chryseobacterium bernardetii and Chryseobacterium taklimakanense . Int J Syst Evol Microbiol 2016; 66:609–615 [View Article]
    [Google Scholar]
  65. Wen C-fang, Xi L-xin, Zhao S, Hao Z-xiang, Luo L et al. Chryseobacterium chengduensis sp. nov. isolated from the air of captive giant panda enclosures in Chengdu, China. J Zhejiang Univ Sci B 2016; 17:610–618
    [Google Scholar]
  66. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  67. Sangal V, Goodfellow M, Jones AL, Schwalbe EC, Blom J et al. Next-generation systematics: an innovative approach to resolve the structure of complex prokaryotic taxa. Sci Rep 2016; 6:38392 [View Article]
    [Google Scholar]
  68. Gupta RS, Lo B, Son J. Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Front Microbiol 2018; 9:67 [View Article]
    [Google Scholar]
  69. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article][PubMed]
    [Google Scholar]
  70. Lebreton F, Manson AL, Saavedra JT, Straub TJ, Earl AM et al. Tracing the Enterococci from Paleozoic origins to the hospital. Cell 2017; 169:e13849–861 [View Article]
    [Google Scholar]
  71. Song H, Wignall PB, Tong J, Yin H. Two pulses of extinction during the Permian–Triassic crisis. Nat Geosci 2013; 6:52–56 [View Article]
    [Google Scholar]
  72. Clapham ME, Bottjer DJ. Prolonged Permian Triassic ecological crisis recorded by molluscan dominance in late Permian offshore assemblages. Proc Natl Acad Sci USA 2007; 104:12971–12975 [View Article]
    [Google Scholar]
  73. Erwin DH. Lessons from the past: biotic recoveries from mass extinctions. Proc Natl Acad Sci USA 2001; 98:5399–5403 [View Article][PubMed]
    [Google Scholar]
  74. Thibodeau AM, Ritterbush K, Yager JA, West AJ, Ibarra Y et al. Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction. Nat Commun 2016; 7:11147 [View Article]
    [Google Scholar]
  75. Burgess SD, Bowring S, Shen SZ, Shen SZ. High-precision timeline for earth's most severe extinction. Proc Natl Acad Sci USA 2014; 111:3316–3321 [View Article][PubMed]
    [Google Scholar]
  76. Raup DM, Sepkoski JJ. Mass extinctions in the marine fossil record. Science 1982; 215:1501–1503 [View Article]
    [Google Scholar]
  77. Hull P. Life in the aftermath of mass extinctions. Current Biology 2015; 25:R941–R952 [View Article]
    [Google Scholar]
  78. Mata SA, Bottjer DJ. Microbes and mass extinctions: paleoenvironmental distribution of microbialites during times of biotic crisis. Geobiology 2012; 10:3–24 [View Article]
    [Google Scholar]
  79. Huang J-P, Kraichak E, Leavitt SD, Nelsen MP, Lumbsch HT. Accelerated diversifications in three diverse families of morphologically complex lichen-forming fungi link to major historical events. Sci Rep 2019; 9:8518 [View Article]
    [Google Scholar]
  80. Marzoli A, Bertrand H, Knight KB, Cirilli S, Buratti N et al. Synchrony of the Central Atlantic magmatic province and the Triassic–Jurassic boundary climatic and biotic crisis. Geology 2004; 32:973 [View Article]
    [Google Scholar]
  81. Vellekoop J, Sluijs A, Smit J, Schouten S, Weijers JWH et al. Rapid short-term cooling following the Chicxulub impact at the Cretaceous–Paleogene boundary. Proc Natl Acad Sci USA 2014; 111:7537–7541 [View Article]
    [Google Scholar]
  82. Le Loeuff J. Paleobiogeography and biodiversity of late Maastrichtian dinosaurs: how many dinosaur species went extinct at the Cretaceous–Tertiary boundary?. Bulletin de la Societe Geologique de France 2012; 183:547–559 [View Article]
    [Google Scholar]
  83. Petersen SV, Dutton A, Lohmann KC. End-Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change. Nat Commun 2016; 7:12079 [View Article]
    [Google Scholar]
  84. Weyant R, Moss C, Weaver R, Hollis D, Jordan J et al. Identification of Unusual Pathogenic Gram-negative Aerobic and Facultatively Anaerobic Bacteria, 2nd ed. Baltimore: Williams & Wilkins; 1995
    [Google Scholar]
  85. Hantsis-Zacharov E, Halpern M. Chryseobacterium haifense sp. nov., a psychrotolerant bacterium isolated from raw milk. Int J Syst Evol Microbiol 2007; 57:2344–2348 [View Article][PubMed]
    [Google Scholar]
  86. Yang F, Hong Q, Wang X, Zhang R, Li SP et al. Chryseobacterium shandongense sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015; 65:1860–1865 [View Article]
    [Google Scholar]
  87. Campbell S, Harada RM, Li QX. Chryseobacterium arothri sp. nov., isolated from the kidneys of a pufferfish. Int J Syst Evol Microbiol 2008; 58:290–293 [View Article][PubMed]
    [Google Scholar]
  88. Kämpfer P, Vaneechoutte M, Wauters G. Chryseobacterium arothri Campbell et al. 2008 is a later heterotypic synonym of Chryseobacterium hominis Vaneechoutte et al. 2007. Int J Syst Evol Microbiol 2009; 59:695–697 [View Article]
    [Google Scholar]
  89. King EO. Studies on a group of previously unclassified bacteria associated with meningitis in infants. Am J Clin Pathol 1959; 31:241–247 [View Article]
    [Google Scholar]
  90. Mangelsdorf K, Bajerski F, Karger C, Wagner D. Identification of a novel fatty acid in the cell membrane of Chryseobacterium frigidisoli PB4 T isolated from an East Antarctic glacier forefield. Org Geochem 2017; 106:68–75 [View Article]
    [Google Scholar]
  91. Wu Y-F, Wu Q-L, Liu S-J. Chryseobacterium taihuense sp. nov., isolated from a eutrophic lake, and emended descriptions of the genus Chryseobacterium, Chryseobacterium taiwanense, Chryseobacterium jejuense and Chryseobacterium indoltheticum . Int J Syst Evol Microbiol 2013; 63:913–919 [View Article][PubMed]
    [Google Scholar]
  92. Chen XY, Zhao R, Chen ZL, Liu L, Li XD et al. Chryseobacterium polytrichastri sp. nov., isolated from a moss (Polytrichastrum formosum), and emended description of the genus Chryseobacterium . Antonie van Leeuwenhoek 2015; 107:403–410 [View Article]
    [Google Scholar]
  93. Campbell LL, Williams OB. A study of chitin-decomposing micro-organisms of marine origin. J Gen Microbiol 1951; 5:894–905 [View Article][PubMed]
    [Google Scholar]
  94. Bernardet J, Bruun B. Genus X. Chryseobacterium Vandamme, Bernardet, Segers, Kersters and Holmes 1994, 829VP. In Krieg NS JT, Brown DR, Hedlund BP, Paster BJ, Ward NL. (editors) Bergey’s Manual of Systematic Bacteriology 4, 2nd ed. New York: Springer; 2011 pp 180–196
    [Google Scholar]
  95. Kämpfer P, Glaeser SP, McInroy JA, Busse H-J. Chryseobacterium arachidiradicis sp. nov., isolated from the geocarposphere (soil around the peanut) of very immature peanuts (Arachis hypogaea). Int J Syst Evol Microbiol 2015; 65:2179–2186 [View Article]
    [Google Scholar]
  96. Hantsis-Zacharov E, Senderovich Y, Halpern M. Chryseobacterium bovis sp. nov., isolated from raw cow's milk. Int J Syst Evol Microbiol 2008; 58:1024–1028 [View Article]
    [Google Scholar]
  97. Quan Z-X, Kim KK, Kim M-K, Jin L, Lee S-T. Chryseobacterium caeni sp. nov., isolated from bioreactor sludge. Int J Syst Evol Microbiol 2007; 57:141–145 [View Article][PubMed]
    [Google Scholar]
  98. Gallego V, Garcia MT, Ventosa A. Chryseobacterium hispanicum sp. nov., isolated from the drinking water distribution system of Sevilla, Spain. Int J Syst Evol Microbiol 2006; 56:1589–1592 [View Article]
    [Google Scholar]
  99. Vaneechoutte M, Kämpfer P, De Baere T, Avesani V, Janssens M et al. Chryseobacterium hominis sp. nov., to accommodate clinical isolates biochemically similar to CDC groups II-h and II-c. Int J Syst Evol Microbiol 2007; 57:2623–2628 [View Article]
    [Google Scholar]
  100. Szoboszlay S, Atzel B, Kukolya J, Toth EM, Marialigeti K et al. Chryseobacterium hungaricum sp. nov., isolated from hydrocarbon-contaminated soil. Int J Syst Evol Microbiol 2008; 58:2748–2754 [View Article]
    [Google Scholar]
  101. Herzog P, Winkler I, Wolking D, Kämpfer P, Lipski A. Chryseobacterium ureilyticum sp. nov., Chryseobacterium gambrini sp. nov., Chryseobacterium pallidum sp. nov. and Chryseobacterium molle sp. nov., isolated from beer-bottling plants. Int J Syst Evol Microbiol 2008; 58:26–33 [View Article][PubMed]
    [Google Scholar]
  102. Kämpfer P, McInroy JA, Glaeser SP. Chryseobacterium zeae sp. nov., Chryseobacterium arachidis sp. nov., and Chryseobacterium geocarposphaerae sp. nov. isolated from the rhizosphere environment. Antonie van Leeuwenhoek 2014; 105:491–500 [View Article]
    [Google Scholar]
  103. Bajerski F, Ganzert L, Mangelsdorf K, Padur L, Lipski A et al. Chryseobacterium frigidisoli sp. nov., a psychrotolerant species of the family Flavobacteriaceae isolated from sandy permafrost from a glacier forefield. Int J Syst Evol Microbiol 2013; 63:2666–2671 [View Article]
    [Google Scholar]
  104. Pires C, Carvalho MF, De Marco P, Magan N, Castro PML. Chryseobacterium palustre sp. nov. and Chryseobacterium humi sp. nov., isolated from industrially contaminated sediments. Int J Syst Evol Microbiol 2010; 60:402–407 [View Article]
    [Google Scholar]
  105. Kämpfer P, Fallschissel K, Avendaño-Herrera R. Chryseobacterium chaponense sp. nov., isolated from farmed Atlantic salmon (Salmo salar). Int J Syst Evol Microbiol 2011; 61:497–501 [View Article][PubMed]
    [Google Scholar]
  106. Guo W, Li J, Shi M, Yuan K, Li N et al. Chryseobacterium montanum sp. nov. isolated from mountain soil. Int J Syst Evol Microbiol 2016; 66:4051–4056 [View Article][PubMed]
    [Google Scholar]
  107. Benmalek Y, Cayol JL, Bouanane NA, Hacene H, Fauque G et al. Chryseobacterium solincola sp. nov., isolated from soil. Int J Syst Evol Microbiol 2010; 60:1876–1880 [View Article][PubMed]
    [Google Scholar]
  108. Yassin AF, Hupfer H, Siering C, Busse HJ. Chryseobacterium treverense sp. nov., isolated from a human clinical source. Int J Syst Evol Microbiol 2010; 60:1993–1998 [View Article][PubMed]
    [Google Scholar]
  109. Joung Y, Joh K. Chryseobacterium yonginense sp. nov., isolated from a mesotrophic artificial lake. Int J Syst Evol Microbiol 2011; 61:1413–1417 [View Article][PubMed]
    [Google Scholar]
  110. Divyasree B, Suresh G, Sasikala C, Ramana CV. Chryseobacterium salipaludis sp. nov., isolated at a wild ass sanctuary. Int J Syst Evol Microbiol 2018; 68:542–546 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003935
Loading
/content/journal/ijsem/10.1099/ijsem.0.003935
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Supplementary material 3

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error