1887

Abstract

A novel Gram-stain-negative, facultatively anaerobic, flagellated and spiral-shaped bacterium, designated WDS2A16A was isolated from a marine solar saltern in Weihai, PR China. Growth was observed at 20–40 °C (optimal 33–37 °C), 1–15 % (w/v) NaCl (optimal 3–4 %) and pH 6.0–9.0 (optimal pH 7.5). Major cellular fatty acids (>10 %) were Cω and C. Phosphatidylglycerol, diphosphatidylglycerol and an unidentified glycolipid were detected as the predominant polar lipids. The sole respiratory quinone was Q-8. The DNA G+C content of strain WDS2A16A was 48.5 mol%. The 16S rRNA gene sequence similarities of WDS2A16A with other species were less than 91 %. The average nucleotide identity, DNA–DNA hybridization and amino acid identity of strain WDS2A16A with the most related strain YC6258 were 66.1, 19.3 and 48.1 %, respectively. Comparative analysis of 16S rRNA gene sequences and phenotypic characterization indicated that strain WDS2A16A represents a novel species in a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain is WDS2A16A (=KCTC 52225=MCCC 1H00139).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003877
2019-12-23
2020-02-25
Loading full text...

Full text loading...

References

  1. Garrity GM, Bell JA, Lilburn T. Order VIII. Oceanospirillales ord. nov In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology2, 2nd ed. part B. New York: Springer; 2005a; p 270
    [Google Scholar]
  2. Golyshin PN, Chernikova TN, Abraham W, Timmis KN, Yakimov MM. Family II. Alcanivoraceae fam. nov In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology2, 2nd ed. part B. New York: Springer; 2005; p 295
    [Google Scholar]
  3. Golyshin PN, Chernikova TN, Abraham WR, Lünsdorf H, Timmis KN et al. Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 2002;52: 901– 911 [CrossRef]
    [Google Scholar]
  4. Garrity GM, Bell JA, Lilburn T. Family III. Hahellaceae fam. nov In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology2, 2nd ed. New York: Springer; 2005c; p 299
    [Google Scholar]
  5. Garrity GM, Bell JA, Lilburn T. Family I. Oceanospirillaceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s manual of systematic bacteriology2, 2nd ed. part B. New York: Springer; 2005b; p 271
    [Google Scholar]
  6. Franzmann PD, Wehmeyer U, Stackebrandt E. Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya. Syst Appl Microbiol 1988;11: 16– 19 [CrossRef]
    [Google Scholar]
  7. Kim H, Choo YJ, Cho JC, fam L. Litoricolaceae fam. nov., to include Litoricola lipolytica gen. nov., sp. nov., a marine bacterium belonging to the order Oceanospirillales. Int J Syst Evol Microbiol 2007;57: 1793– 1798 [CrossRef]
    [Google Scholar]
  8. Garrity GM, Bell JA, Lilburn T. Taxonomic outline of the Procaryotes.’ Bergey’s Manual of Systematic Bacteriology 4, 2nd ed. New York: Springer; 2003
    [Google Scholar]
  9. Wang ZJ, Xie ZH, Wang C, Du ZJ, Chen GJ. Motiliproteus sediminis gen. nov., sp. nov., isolated from coastal sediment. Antonie van Leeuwenhoek 2014;106: 615– 621 [CrossRef]
    [Google Scholar]
  10. Maturrano L, Valens-Vadell M, Rosselló-Mora R, Antón J. Salicola marasensis gen. nov., sp. nov., an extremely halophilic bacterium isolated from the Maras solar salterns in Peru. Int J Syst Evol Microbiol 2006;56: 1685– 1691 [CrossRef]
    [Google Scholar]
  11. Kaesler I, Graeber I, Borchert MS, Pape T, Dieckmann R et al. Spongiispira norvegica gen. nov., sp. nov., a marine bacterium isolated from the boreal sponge Isops phlegraei. Int J Syst Evol Microbiol 2008;58: 1815– 1820 [CrossRef]
    [Google Scholar]
  12. Chung EJ, Park JA, Jeon CO, Chung YR. Gynuella sunshinyii gen. nov., sp. nov., an antifungal rhizobacterium isolated from a halophyte, carex scabrifolia steud. Int J Syst Evol Microbiol 2015;65: 1038– 1043 [CrossRef]
    [Google Scholar]
  13. Chen YG, Cui XL, Li QY, Wang YX, Tang SK et al. Saccharospirillum salsuginis sp. nov., a gammaproteobacterium from a subterranean brine. Int J Syst Evol Microbiol 2009;59: 1382– 1386 [CrossRef]
    [Google Scholar]
  14. Choi A, Oh HM, Cho JC. Saccharospirillum aestuarii sp. nov., isolated from tidal flat sediment, and an emended description of the genus Saccharospirillum. Int J Syst Evol Microbiol 2011;61: 487– 492 [CrossRef]
    [Google Scholar]
  15. Lake E, Labrenz M, Lawson PA, Tindall BJ, Collins MD et al. Saccharospirillum impatiens gen. nov., sp. nov., a novel gamma-Proteobacterium isolated from hypersaline Ekho Lake (East Antarctica). Int J Syst Evol Microbiol 2003;53: 653– 660
    [Google Scholar]
  16. Shahinpei A, Amoozegar MA, Fazeli SAS, Schumann P, Ventosa A et al. Salinispirillum marinum gen. nov., sp. nov., a haloalkaliphilic bacterium in the family 'Saccharospirillaceae'. Int J Syst Evol Microbiol 2014;64: 3610– 3615 [CrossRef]
    [Google Scholar]
  17. Mu DS, Liang QY, Wang XM, Lu DC, Shi MJ et al. Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing. Microbiome 2018;6: 230 [CrossRef]
    [Google Scholar]
  18. Liu QQ, Wang Y, Li J, Du ZJ, Chen GJ. Saccharicrinis carchari sp. nov., isolated from a shark, and emended descriptions of the genus Saccharicrinis and Saccharicrinis fermentans. Int J Syst Evol Microbiol 2014;64: 2204– 2209 [CrossRef]
    [Google Scholar]
  19. Thompson J, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25: 4876– 4882 [CrossRef]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425 [CrossRef]
    [Google Scholar]
  21. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33: 1870– 1874 [CrossRef]
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16: 111– 120 [CrossRef]
    [Google Scholar]
  23. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39: 783– 791 [CrossRef]
    [Google Scholar]
  24. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68: 461– 466 [CrossRef]
    [Google Scholar]
  25. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018;56: 280– 285 [CrossRef]
    [Google Scholar]
  26. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30: 1312– 1313 [CrossRef]
    [Google Scholar]
  27. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110: 1281– 1286 [CrossRef]
    [Google Scholar]
  28. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60 [CrossRef]
    [Google Scholar]
  29. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe 2014;9: 111– 118 [CrossRef]
    [Google Scholar]
  30. Smibert RM, Krieg NR. Phenotypic characterization In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp 607– 654
    [Google Scholar]
  31. Dong XZ, Cai MY. Chapter 14 Manual for the Systematic Identification of General Bacteria Science Press Beijing; 2001; pp 364– 390
    [Google Scholar]
  32. Cowan ST, Steel KJ. Bacterial characters and characterization In Cowan ST. editor Cowan and Manual for the identification of medical bacteria Cambridge, UK: Cambridge University Press; 1974
    [Google Scholar]
  33. Mata JA, Martínez-Cánovas J, Quesada E, Béjar V. A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 2002;25: 360– 375 [CrossRef]
    [Google Scholar]
  34. CLSI Performance Standards for Antimicrobial Susceptibility Testing. In: Informational Supplement M100-S22 Wayne, PA: Clinical and Laboratory Standards Institute; 2012
    [Google Scholar]
  35. Xu XW, Wu YH, Wang CS, Oren A, Zhou PJ et al. Haloferax larsenii sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 2007;57: 717– 720 [CrossRef]
    [Google Scholar]
  36. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2: 233– 241 [CrossRef]
    [Google Scholar]
  37. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996;42: 457– 469 [CrossRef]
    [Google Scholar]
  38. Choi EJ, Kwon HC, Sohn YC, Yang HO. Kistimonas asteriae gen. nov., sp. nov., a gammaproteobacterium isolated from Asterias amurensis. Int J Syst Evol Microbiol 2010;60: 938– 943 [CrossRef]
    [Google Scholar]
  39. Lee J, Shin NR, Lee HW, Roh SW, Kim MS et al. Kistimonas scapharcae sp. nov., isolated from a dead ark clam (Scapharca broughtonii), and emended description of the genus Kistimonas. Int J Syst Evol Microbiol 2012;62: 2865– 2869 [CrossRef]
    [Google Scholar]
  40. Seo H, Yang S, Kim S, Lee J, Kwon KK et al. Amphritea spongicola sp. nov., isolated from a marine sponge, and emended description of the genus Amphritea. Int J Syst Evol Microbiol 2015;65: 1866– 1870
    [Google Scholar]
  41. Miyazaki M, Nogi Y, Fujiwara Y, Kawato M, Nagahama T et al. Amphritea japonica sp. nov. and Amphritea balenae sp. nov., isolated from the sediment adjacent to sperm whale carcasses off Kagoshima, Japan. Int J Syst Evol Microbiol 2008;58: 2815– 2820 [CrossRef]
    [Google Scholar]
  42. Wiese J, Imhoff JF. Amphritea atlantica gen. nov., sp. nov., a gammaproteobacterium from the Logatchev hydrothermal vent field. Int J Syst Evol Microbiol 2008;58: 34– 39
    [Google Scholar]
  43. Kim YO, Park S, Kim DN, Nam BH, Won SM et al. Amphritea ceti sp. nov., isolated from faeces of Beluga whale (Delphinapterus leucas). Int J Syst Evol Microbiol 2014;64: 4068– 4072 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003877
Loading
/content/journal/ijsem/10.1099/ijsem.0.003877
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error