1887

Abstract

A salt-tolerant, Gram-negative, rod-shaped and yellow-pigmented bacterium, designated strain AY-3R, was isolated from rhizosphere soil of a desert xerophyte, , sampled at Badain Jaran Desert, Alxa region, Inner Mongolia, PR China. Growth of this strain was observed at 20–42 °C (optimum, 28–30 °C), at pH 6.0–9.0 (optimum, pH 6.0–7.0) and at 0–8 % (w/v) NaCl (optimum, 3 %). Results of phylogenetic analysis based on 16S rRNA gene sequences showed that strain AY-3R was a member of the genus , with the highest similarity to Ery1 (97.6 %), followed by S3-63 (96.9 %). The predominant fatty acids (>10.0 %) were Cω7, Cω6 and summed feature 3 (Cω7 and/or Cω6). The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid and one unknown polar lipid. The predominant respiratory quinone was ubiquinone-10. The G+C content of the genomic DNA of strain AY-3R was 66.3 mol%. On the basis of the data from this polyphasic taxonomic study, strain AY-3R represents a novel species of the genus , named sp. nov. (=MCCC 1K03572=KCTC 72280).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003817
2019-11-01
2019-11-13
Loading full text...

Full text loading...

References

  1. Lee KB, Liu CT, Anzai Y, Kim H, Aono T et al. The hierarchical system of the 'Alphaproteobacteria': description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 2005;55: 1907– 1919 [CrossRef]
    [Google Scholar]
  2. Kwon KK, Woo JH, Yang SH, Kang JH, Kang SG et al. Altererythrobacter epoxidivorans gen. nov., sp. nov., an epoxide hydrolase-active, mesophilic marine bacterium isolated from cold-seep sediment, and reclassification of Erythrobacter luteolus Yoon et al. 2005 as Altererythrobacter luteolus comb. nov. Int J Syst Evol Microbiol 2007;57: 2207– 2211 [CrossRef]
    [Google Scholar]
  3. Xue H, Piao CG, Guo MW, Wang LF, Fang W et al. Description of Altererythrobacter aerius sp. nov., isolated from air, and emended description of the genus Altererythrobacter. Int J Syst Evol Microbiol 2016;66: 4543– 4548 [CrossRef]
    [Google Scholar]
  4. Xue X, Zhang K, Cai F, Dai J, Wang Y et al. Altererythrobacter xinjiangensis sp. nov., isolated from desert sand, and emended description of the genus Altererythrobacter. Int J Syst Evol Microbiol 2012;62: 28– 32 [CrossRef]
    [Google Scholar]
  5. Seo SH, Lee SD. Altererythrobacter marensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2010;60: 307– 311 [CrossRef]
    [Google Scholar]
  6. Lai Q, Yuan J, Shao Z. Altererythrobacter marinus sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2009;59: 2973– 2976 [CrossRef]
    [Google Scholar]
  7. Wu YH, Xu L, Meng FX, Zhang DS, Wang CS et al. Altererythrobacter atlanticus sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2014;64: 116– 121 [CrossRef]
    [Google Scholar]
  8. Qu JH, Ma WW, Li HF, Wang XF, Lu BB et al. Altererythrobacter amylolyticus sp. nov., isolated from lake sediment. Int J Syst Evol Microbiol 2019;69: 1231– 1236 [CrossRef]
    [Google Scholar]
  9. Fan ZY, Xiao YP, Hui W, Tian GR, Lee JS et al. Altererythrobacter dongtanensis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2011;61: 2035– 2039 [CrossRef]
    [Google Scholar]
  10. Park S, Park JM, Oh TK, Yoon JH. Altererythrobacter insulae sp. nov., a lipolytic bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2019;69: 1009– 1015 [CrossRef]
    [Google Scholar]
  11. Matsumoto M, Iwama D, Arakaki A, Tanaka A, Tanaka T et al. Altererythrobacter ishigakiensis sp. nov., an astaxanthin-producing bacterium isolated from a marine sediment. Int J Syst Evol Microbiol 2011;61: 2956– 2961 [CrossRef]
    [Google Scholar]
  12. Yoon JH, Kang SJ, Lee MH, Oh HW, Oh TK. Porphyrobacter dokdonensis sp. nov., isolated from sea water. Int J Syst Evol Microbiol 2006;56: 1079– 1083 [CrossRef]
    [Google Scholar]
  13. Liang X, Lin H, Wang K, Liao Y, Lai Q et al. Altererythrobacter salegens sp. nov., a slightly halophilic bacterium isolated from surface sediment. Int J Syst Evol Microbiol 2017;67: 909– 913 [CrossRef]
    [Google Scholar]
  14. Meng FX, Li G, Fang C, Wu YH, Cheng H et al. Altererythrobacter aerophilus sp. nov., isolated from deep-sea water of the north-west Pacific. Int J Syst Evol Microbiol 2019;69: 1689– 1695 [CrossRef]
    [Google Scholar]
  15. Yan ZF, Lin P, Won KH, Yang JE, Li CT et al. Altererythrobacter deserti sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 2017;67: 3806– 3811 [CrossRef]
    [Google Scholar]
  16. Zhao Q, Li HR, Han QQ, He AL, Nie CY et al. Altererythrobacter soli sp. nov., isolated from desert sand. Int J Syst Evol Microbiol 2017;67: 454– 459 [CrossRef]
    [Google Scholar]
  17. Zhang W, Yuan X, Feng Q, Zhang R, Zhao X et al. Altererythrobacter buctense sp. nov., isolated from mudstone core. Antonie van Leeuwenhoek 2016;109: 793– 799 [CrossRef]
    [Google Scholar]
  18. Srinivasan S, Joo ES, Kim EB, Jeon SH, Jung HY et al. Altererythrobacter terrae sp. nov., isolated from mountain soil. Antonie van Leeuwenhoek 2016;109: 397– 404 [CrossRef]
    [Google Scholar]
  19. Kumar NR, Nair S, Langer S, Busse HJ, Kämpfer P. Altererythrobacter indicus sp. nov., isolated from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 2008;58: 839– 844 [CrossRef]
    [Google Scholar]
  20. Dahal RH, Kim J. Altererythrobacter fulvus sp. nov., a novel alkalitolerant alphaproteobacterium isolated from forest soil. Int J Syst Evol Microbiol 2018;68: 1502– 1508 [CrossRef]
    [Google Scholar]
  21. Bai Y, Yang D, Wang J, Xu S, Wang X et al. Phylogenetic diversity of culturable bacteria from alpine permafrost in the Tianshan Mountains, northwestern China. Res Microbiol 2006;157: 741– 751 [CrossRef]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425 [CrossRef]
    [Google Scholar]
  23. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: 1613– 1617 [CrossRef]
    [Google Scholar]
  24. Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. Genbank. Nucleic Acids Res 2016;44: D67– D72 [CrossRef]
    [Google Scholar]
  25. Jukes TH, Cantor CR. Evolution of protein molecules In Munro HN. editor Mammalian Protein Metabolism3 New York: Academic Press; 1969; pp 21– 132
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17: 368– 376 [CrossRef]
    [Google Scholar]
  27. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20: 406– 416 [CrossRef]
    [Google Scholar]
  28. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33: 1870– 1874 [CrossRef]
    [Google Scholar]
  29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39: 783– 791 [CrossRef]
    [Google Scholar]
  30. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19: 455– 477 [CrossRef]
    [Google Scholar]
  31. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35: 3100– 3108 [CrossRef]
    [Google Scholar]
  32. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106: 19126– 19131 [CrossRef]
    [Google Scholar]
  33. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the AD hoc Committee on reconciliation of approaches to bacterial Systematics. Int J Syst Evol Microbiol 1987;37: 463– 464 [CrossRef]
    [Google Scholar]
  34. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for general and molecular bacteriology. American Society for Microbiology 1994; 607– 653
    [Google Scholar]
  35. Lee JS, Lee KC, Chang YH, Hong SG, HW O et al. Paenibacillus daejeonensis sp. nov., a novel alkaliphilic bacterium from soil. Int J Syst Evol Microbiol 2002;52: 2107– 2111
    [Google Scholar]
  36. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55: 1149– 1153 [CrossRef]
    [Google Scholar]
  37. Barrow GI, Cowan ST, Feltham RKA, Steel KJ. Cowan and Steel’s Manual for the Identification of Medical Bacteria , 3rd ed. Cambridge, New York: Cambridge University Press; 1993
    [Google Scholar]
  38. Kates M. Techniques of Lipidology, 2nd ed. rev. Amsterdam: Elsevier; 1986; pp 106– 107
    [Google Scholar]
  39. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt YM. (editors) Methods for General and Molecular Microbiology, 3rd edn. Washington, DC, USA: ASM Press; 2007; pp 330– 393
    [Google Scholar]
  40. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI; 1990
    [Google Scholar]
  41. Collins M. Isoprenoid quinone analysis in bacterial classification and identification In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press;; 1985; pp 267– 287
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003817
Loading
/content/journal/ijsem/10.1099/ijsem.0.003817
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error