1887

Abstract

Huge numbers of bacteria reside in the digestive tract of most animals. During an investigation into the bacterial diversity of primates, strain YIM 102668 was isolated. When neighbour-joining phylogenetic analysis based on 16S rRNA gene sequences was conducted, strain YIM 102668 formed a cluster within the family and in a lineage not associated with any known group of previously proposed genera. Closely related genera were (94.8 %), (94.8 %), (highest 94.6 %), (90.9 %) and (90.6 %). In addition, strain YIM 102668 contained MK-6 as the predominant respiratory quinone and iso-C as the major fatty acid. The major polar lipid was phosphatidylethanolamine and the genomic DNA G+C content was 30.6 mol%. These chemotaxonomic characterizations confirmed that strain YIM 102668 belonged to the family . Supported by the results of phylogenetic, phenotypic and chemotaxonomic analyses, we propose that strain YIM 102668 represents a novel genus, for which the name gen. nov., sp. nov. is proposed. The type strain is YIM 102668 (=KCTC 52109=CCTCC AB 2016016).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003815
2019-11-01
2019-11-13
Loading full text...

Full text loading...

References

  1. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR et al. Evolution of mammals and their gut microbes. Science 2008;320: 1647– 1651 [CrossRef]
    [Google Scholar]
  2. Xue Z, Zhang W, Wang L, Hou R, Zhang M et al. The bamboo-eating giant panda harbors a carnivore-like gut microbiota, with excessive seasonal variations. mBio 2015;6: e00022– 15 [CrossRef]
    [Google Scholar]
  3. Sanders JG, Beichman AC, Roman J, Scott JJ, Emerson D et al. Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores. Nat Commun 2015;6: 8285 [CrossRef]
    [Google Scholar]
  4. Li Y, Guo W, Han S, Kong F, Wang C et al. The evolution of the gut microbiota in the giant and the red PANDAS. Sci Rep 2015;18: 10185
    [Google Scholar]
  5. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013;341: 1241214 [CrossRef]
    [Google Scholar]
  6. Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 2008;6: 776– 788 [CrossRef]
    [Google Scholar]
  7. Bernardet JF. Family I. Flavobacteriaceae Reichenbach 1992b, 327VP (Effective publication: Reichenbach 1989b, 2013.) emend. Bernardet, Segers, Vancanneyt, Berthe, Kersters and Vandamme 1996, 145 emend. Bernardet, Nakagawa and Holmes 2002, 1057 In Goodfellow M, Kämpfer P, Chun Jongsik, Vos PaulDe. (editors) Bergey’s Manual of Systematic Bacteriology 4A, 2nd ed. New York: Springer: Rainey and William B. Whitman; 2012
    [Google Scholar]
  8. Nakagawa Y, Bernardet JF. An introduction to the family Flavobacteriaceae In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H. (editors) The prokaryotes New York: Springer; 2006; pp 455– 480
    [Google Scholar]
  9. Bowman JP. The marine clade of the family Flavobacteriaceae: the genera Aequorivita, Arenibacter, Cellulophaga, Croceibacter, Formosa, Gelidibacter, Gillisia, Maribacter, Mesonia, Muricauda, Polaribacter, Psychroflexus, Psychroserpens, Robiginitalea, Salegentibacter, Tenacibaculum, Ulvibacter, Vitellibacter and Zobellia In Dworkin Falkow. editor The Prokaryotes: A Handbook on the Biology of Bacteria7, 3rd ed. New York: Springer; 2006; pp 677– 694
    [Google Scholar]
  10. Bowman JP, Nichols DS. Novel members of the family Flavobacteriaceae from Antarctic maritime habitats including Subsaximicrobium wynnwilliamsii gen. nov., sp. nov., Subsaximicrobium saxinquilinus sp. nov., Subsaxibacter broadyi gen. nov., sp. nov., Lacinutrix copepodicola gen. nov., sp. nov., and novel species of the genera Bizionia, Gelidibacter and Gillisia. Int J Syst Evol Microbiol 2005;55: 1471– 1486 [CrossRef]
    [Google Scholar]
  11. Jackson SA, Kennedy J, Morrissey JP, O'Gara F, Dobson ADW et al. Maribacter spongiicola sp. nov. and Maribacter vaceletii sp. nov., isolated from marine sponges, and emended description of the genus Maribacter. Int J Syst Evol Microbiol 2015;65: 2097– 2103 [CrossRef]
    [Google Scholar]
  12. Hyun D-W, Kim JY, Kim M-S, Shin N-R, Kim HS et al. Actibacter Haliotis sp. nov., isolated from the gut of an abalone, Haliotis discus hannai, and emended description of the genus Actibacter. Int J Syst Evol Microbiol 2015;65: 49– 55 [CrossRef]
    [Google Scholar]
  13. Shakeela Q, Shehzad A, Zhang Y, Tang K, Zhang XH. Flavirhabdus iliipiscaria gen. nov., sp. nov., isolated from intestine of flounder (Paralichthys olivaceus) and emended descriptions of the genera Flavivirga, Algibacter, Bizionia and Formosa. Int J Syst Evol Microbiol 2015;65: 1347– 1353 [CrossRef]
    [Google Scholar]
  14. Holmes B, Snell JJS, Lapage SP. Revised description, from clinical strains, of Flavobacterium breve (Lustig) Bergey et al. 1923 and proposal of the neotype strain. Int J Syst Bacteriol 1978;28: 201– 208 [CrossRef]
    [Google Scholar]
  15. Holmes B, Steigerwalt AG, Weaver RE, Brenner DJ. Weeksella virosa gen. nov., sp. nov. (formerly group IIF), found in human clinical specimens. Syst Appl Microbiol 1986;8: 185– 190 [CrossRef]
    [Google Scholar]
  16. Zhang RG, Tan X, Zhao XM, Deng J, Lv J. Moheibacter sediminis gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from sediment, and emended descriptions of Empedobacter brevis, Wautersiella falsenii and Weeksella virosa. Int J Syst Evol Microbiol 2014;64: 1481– 1487 [CrossRef]
    [Google Scholar]
  17. Zhang RG, Tan X, Liang Y, Meng TY, Liang HZ et al. Description of Chishuiella changwenlii gen. nov., sp. nov., isolated from freshwater, and transfer of Wautersiella falsenii to the genus Empedobacter as Empedobacter falsenii comb. nov. Int J Syst Evol Microbiol 2014;64: 2723– 2728 [CrossRef]
    [Google Scholar]
  18. Yang N, Zhang L, Sun C, Na Y, Lixin Z. Algoriella xinjiangensis gen. nov., sp. nov., a new psychrotolerant bacterium of the family Flavobacteriaceae. Antonie van Leeuwenhoek 2015;108: 1107 1116 [CrossRef]
    [Google Scholar]
  19. Schauss T, Busse HJ, Golke J, Kämpfer P, Glaeser SP et al. Empedobacter stercoris sp. nov., isolated from an input sample of a biogas plant. Int J Syst Evol Microbiol 2015;65: 3746– 3753 [CrossRef]
    [Google Scholar]
  20. Schauss T, Busse HJ, Golke J, Kämpfer P, Glaeser SP et al. Moheibacter stercoris sp. nov., isolated from an input sample of a biogas plant. Int J Syst Evol Microbiol 2016;66: 2585– 2591 [CrossRef]
    [Google Scholar]
  21. Kim YO, Park S, Park IS, Nam BH, Kim DG et al. Empedobacter tilapiae sp. nov., isolated from an intestine of Nile tilapia (Oreochromis niloticus). Int J Syst Evol Microbiol 2019;69: 2781– 2786 [CrossRef]
    [Google Scholar]
  22. Chen X, Li G-D, Li Q-Y, Hu C-J, Liu C-B et al. Corynebacterium faecale sp. nov., isolated from the faeces of Assamese macaque. Int J Syst Evol Microbiol 2016;66: 2478– 2483 [CrossRef]
    [Google Scholar]
  23. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985;49: 1– 7
    [Google Scholar]
  24. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16: 313– 340 [CrossRef]
    [Google Scholar]
  25. Chen X, QY L, GD L, FJ X, Han L et al. The distal gut bacterial community of some primates and Carnivora. Current Microbiology 2017;75: 1– 10
    [Google Scholar]
  26. Cui XL, Mao PH, Zeng M, Li WJ, Zhang LP et al. Streptomonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 2001;51: 357– 363 [CrossRef]
    [Google Scholar]
  27. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: 1613– 1617 [CrossRef]
    [Google Scholar]
  28. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25: 4876– 4882 [CrossRef]
    [Google Scholar]
  29. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33: 1870– 1874 [CrossRef]
    [Google Scholar]
  30. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425 [CrossRef]
    [Google Scholar]
  31. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17: 368– 376 [CrossRef]
    [Google Scholar]
  32. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20: 406– 416 [CrossRef]
    [Google Scholar]
  33. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16: 111– 120 [CrossRef]
    [Google Scholar]
  34. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39: 783– 791 [CrossRef]
    [Google Scholar]
  35. Bouthinon D, Soldano H. A new method to predict the consensus secondary structure of a set of unaligned RNA sequences. Bioinformatics 1999;15: 785– 798 [CrossRef]
    [Google Scholar]
  36. Akutsu T. Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Appl Math 2000;104: 45– 62 [CrossRef]
    [Google Scholar]
  37. Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010;60: 249– 266 [CrossRef]
    [Google Scholar]
  38. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008;31: 241– 250 [CrossRef]
    [Google Scholar]
  39. Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 2010;5: e9490 [CrossRef]
    [Google Scholar]
  40. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017;45: D535– D542 [CrossRef]
    [Google Scholar]
  41. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57: 81– 91 [CrossRef]
    [Google Scholar]
  42. Murray RGE, Doetsch RN, Robinow CF. Determinative and cytological light microscopy Methods for General and Molecular Bacteriology Washington: American Society for Microbiology; 1994; pp 22– 41
    [Google Scholar]
  43. Xu P, WJ L, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol. Microbiol 2005;55: 1149– 1153
    [Google Scholar]
  44. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007; pp 330– 393
    [Google Scholar]
  45. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52: 1049– 1070 [CrossRef]
    [Google Scholar]
  46. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2: 233– 241 [CrossRef]
    [Google Scholar]
  47. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982;5: 2359– 2367 [CrossRef]
    [Google Scholar]
  48. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990;20: 16
    [Google Scholar]
  49. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39: 159– 167 [CrossRef]
    [Google Scholar]
  50. Sankar SA, Lo CI, Fall B, Sambe-Ba B, Mediannikov O et al. Noncontiguous finished genome sequence and description of Weeksella massiliensis sp. nov. New Microbes New Infect 2015;8: 89– 98 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003815
Loading
/content/journal/ijsem/10.1099/ijsem.0.003815
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error