1887

Abstract

A Gram-stain-positive, aerobic bacterium, designated CPCC 204705, was isolated from a desert soil sample, collected from the Badain Jaran desert. Growth of strain CPCC 204705 was observed at pH 6.0–8.0 and 15–37 °C, with optimal growth at 28 °C and pH 7.0. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CPCC 204705 belonged to the genus , showing the highest similarity (98.54 %) of 16S rRNA gene sequence to JCM 17534. The peptidoglycan type was A4, containing -ornithine and d-glutamic acids as diagnostic amino acids. Rhamnose and galactose were detected in the whole-cell hydrolysate as diagnostic sugars. The major cellular fatty acids were anteiso-C, anteiso-CA, C and C. The major menaquinone was MK-9 (H) and the polar lipid system contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol mannoside, one unidentified lipid, one unidentified aminolipid and two unidentified aminophospholipids. The DNA–DNA hybridization value between strain CPCC 204705 and JCM 17534 was 7.1±0.4 %, and the value of average nucleotide identity between these two strains was 79.8 %. The DNA G+C content of strain CPCC 204705 was 75.4 mol%. Based on the results of physiological experiments, chemotaxonomic data, phylogenetic analysis and DNA–DNA hybridization value, strain CPCC 204705 should be classified as a novel species. The name sp. nov. is proposed, with strain CPCC 204705 (=DSM 105430=KCTC 39974) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003806
2019-10-29
2019-11-13
Loading full text...

Full text loading...

References

  1. Funke G, Ramos CP, Collins MD. Identification of some clinical strains of CDC coryneform group A-3 and A-4 bacteria as Cellulomonas species and proposal of Cellulomonas hominis sp. nov. for some group A-3 strains. J Clin Microbiol 1995;33: 2091– 2097
    [Google Scholar]
  2. Collins MD, Pascual C. Reclassification of Actinomyces humiferus (Gledhill and Casida) as Cellulomonas humilata nom. corrig., comb. nov. Int J Syst Evol Microbiol 2000;50: 661– 663 [CrossRef]
    [Google Scholar]
  3. Elberson MA, Malekzadeh F, Yazdi MT, Kameranpour N, Noori-Daloii MR et al. Cellulomonas persica sp. nov. and Cellulomonas iranensis sp. nov., mesophilic cellulose-degrading bacteria isolated from forest soils. Int J Syst Evol Microbiol 2000;50: 993– 996 [CrossRef]
    [Google Scholar]
  4. Ahmed I, Kudo T, Abbas S, Ehsan M, Iino T et al. Cellulomonas pakistanensis sp. nov., a moderately halotolerant actinobacteria. Int J Syst Evol Microbiol 2014;64: 2305– 2311 [CrossRef]
    [Google Scholar]
  5. Rusznyák A, Tóth EM, Schumann P, Spröer C, Makk J et al. Cellulomonas phragmiteti sp. nov., a cellulolytic bacterium isolated from reed (Phragmites australis) periphyton in a shallow soda pond. Int J Syst Evol Microbiol 2011;61: 1662– 1666 [CrossRef]
    [Google Scholar]
  6. Hatayama K, Esaki K, Ide T. Cellulomonas soli sp. nov. and Cellulomonas oligotrophica sp. nov., isolated from soil. Int J Syst Evol Microbiol 2013;63: 60– 65 [CrossRef]
    [Google Scholar]
  7. Schumann P, Weiss N, Stackebrandt E. Reclassification of Cellulomonas cellulans (Stackebrandt and Keddie 1986) as Cellulosimicrobium cellulans gen. nov., comb. nov. Int J Syst Evol Microbiol 2001;51: 1007– 1010 [CrossRef]
    [Google Scholar]
  8. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55: 1149– 1153 [CrossRef]
    [Google Scholar]
  9. Magee CM, Rodeheaver G, Edgerton MT, Edlich RF. A more reliable gram staining technic for diagnosis of surgical infections. Am J Surg 1975;130: 341– 346 [CrossRef]
    [Google Scholar]
  10. Reinhold-Hurek B, Hurek T, Claeyssens M, van Montagu M. Cloning, expression in Escherichia coli, and characterization of cellulolytic enzymes of Azoarcus sp., a root-invading diazotroph. J Bacteriol 1993;175: 7056– 7065 [CrossRef]
    [Google Scholar]
  11. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978;24: 710– 715 [CrossRef]
    [Google Scholar]
  12. Li W-J, Xu P, Schumann P, Zhang Y-Q, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007;57: 1424– 1428 [CrossRef]
    [Google Scholar]
  13. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62: 716– 721 [CrossRef]
    [Google Scholar]
  14. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33: 1870– 1874 [CrossRef]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425 [CrossRef]
    [Google Scholar]
  16. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17: 368– 376 [CrossRef]
    [Google Scholar]
  17. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20: 406– 416 [CrossRef]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17: 368– 376 [CrossRef]
    [Google Scholar]
  19. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110: 1281– 1286 [CrossRef]
    [Google Scholar]
  20. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12: 133– 142 [CrossRef]
    [Google Scholar]
  21. Schumann P. Peptidoglycan structure. Methods Microbiol 2011;38: 101– 129
    [Google Scholar]
  22. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28: 226– 231
    [Google Scholar]
  23. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100: 221– 230 [CrossRef]
    [Google Scholar]
  24. Groth I, Schumann P, Rainey FA, Martin K, Schuetze B et al. Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 1997;47: 1129– 1133 [CrossRef]
    [Google Scholar]
  25. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2: 233– 241 [CrossRef]
    [Google Scholar]
  26. Kroppenstedt RM. Fatty acid and menaquinone analysis of actinomycetes and related organisms In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series)20 Manhattan, NY: Academic Press; 1985; pp 173– 199
    [Google Scholar]
  27. Sasser M. Identification of bacteria by gas ghromatography of cellular fatty acids, MIDI technical note 101. Newark, DE: MIDI inc; 1990
  28. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc Committee on reconciliation of approaches to bacterial Systematics. Int J Syst Evol Microbiol 1987;37: 463– 464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003806
Loading
/content/journal/ijsem/10.1099/ijsem.0.003806
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error