1887

Abstract

A golden-pigmented, Gram-strain-negative, aerobic, rod-shaped, non-flagellated and non-gliding bacterium, designated strain lm2, was isolated from activated sludge obtained from a wastewater treatment plant in Binzhou (Shandong province, PR China). Growth occurred at 15–45°C (optimum, 30 °C), in the presence of 0–5.0 % (w/v) NaCl (optimum, 0–2.0 %) and at pH 6.5–8.0 (optimum, pH 7.0–7.5). The chemotaxonomic, phenotypic and genomic traits were investigated. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain lm2 belonged to the genus , with highest sequence similarity to CC-CZW010 (97.1 %). Genome sequencing revealed a genome size of 3 611 894 bp and a G+C content of 34.9 mol%. The average nucleotide identity value and the digital DNA–DNA hybridization (dDDH) value between strain lm2 and JCM 30470 were 87.8 and 34.7 %, respectively. The major respiratory quinone was Menaquinone-6 (MK-6). The major fatty acids were iso-C, iso-C 3-OH and iso-C 9 and its polar lipids consisted of phosphatidylethanolamine (PE), unidentified lipids (L1–5) and unidentified aminolipids (AL1–4). On the basis of these data, strain lm2 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is lm2 (=KCTC 72529=CCTCC AB2019126).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 31741007)
    • Principle Award Recipient: Qiang Li
  • National Natural Science Foundation of China (Award 31870105)
    • Principle Award Recipient: Qiang Li
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003800
2020-02-03
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/1/618.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003800&mimeType=html&fmt=ahah

References

  1. Vandamme P, Bernardet JF, Segers P, Kersters K, Holmes B. Notes: new perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 1994; 44:827–831 [View Article]
    [Google Scholar]
  2. Tai CJ et al. Chryseobacterium taiwanense sp. nov., isolated from soil in Taiwan. Int J Syst Evol Microbiol 2006; 56:1771–1776 [View Article]
    [Google Scholar]
  3. Weon HY, Kim BY, Yoo SH, Kwon SW, Stackebrandt E et al. Chryseobacterium soli sp. nov. and Chryseobacterium jejuense sp. nov., isolated from soil samples from Jeju, Korea. Int J Syst Evol Microbiol 2008; 58:470–473 [View Article]
    [Google Scholar]
  4. Kämpfer P, Vaneechoutte M, Lodders N, De Baere T, Avesani V et al. Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium . Int J Syst Evol Microbiol 2009; 59:2421–2428 [View Article]
    [Google Scholar]
  5. Kim T, Kim M, Kang O, Jiang F, Chang X et al. Chryseobacterium frigidum sp. nov., isolated from high-Arctic tundra soil, and emended descriptions of Chryseobacterium bernardetii and Chryseobacterium taklimakanense . Int J Syst Evol Microbiol 2016; 66:609–615 [View Article]
    [Google Scholar]
  6. Shen FT, Kämpfer P, Young CC, Lai WA, Arun AB. Chryseobacterium taichungense sp. nov., isolated from contaminated soil. Int J Syst Evol Microbiol 2005; 55:1301–1304 [View Article]
    [Google Scholar]
  7. Kämpfer P, Dreyer U, Neef A, Dott W, Busse HJ. Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 2003; 53:93–97 [View Article]
    [Google Scholar]
  8. Sang MK, Kim HS, Myung IS, Ryu CM, Kim BS et al. Chryseobacterium kwangjuense sp. nov., isolated from pepper (Capsicum annuum L.) root. Int J Syst Evol Microbiol 2013; 63:2835–2840 [View Article]
    [Google Scholar]
  9. Holmes B, Steigerwalt AG, Nicholson AC. Dna-Dna hybridization study of strains of Chryseobacterium, Elizabethkingia and Empedobacter and of other usually indole-producing non-fermenters of CDC groups IIc, IIE, IIH and III, mostly from human clinical sources, and proposals of Chryseobacterium bernardetii sp. nov., Chryseobacterium carnis sp. nov., Chryseobacterium lactis sp. nov., Chryseobacterium nakagawai sp. nov. and Chryseobacterium taklimakanense comb. nov. Int J Syst Evol Microbiol 2013; 63:4639–4662 [View Article]
    [Google Scholar]
  10. Chaudhari PN, Wani KS, Chaudhari BL, Chincholkar SB. Characteristics of Sulfobacin A from a soil isolate Chryseobacterium gleum . Appl Biochem Biotechnol 2009; 158:231–241 [View Article]
    [Google Scholar]
  11. Kim HS, Sang MK, Jung HW, Jeun YC, Myung IS et al. Identification and characterization of Chryseobacterium wanjuense strain KJ9C8 as a biocontrol agent of Phytophthora blight of pepper. Crop Prot 2012; 32:129–137 [View Article]
    [Google Scholar]
  12. Yasmin S, Garcia G, Sylvester T, Sunenshine R. Chryseobacterium indologenes in a woman with metastatic breast cancer in the United States of America: a case report. J Med Case Rep 2013; 7:190 [View Article]
    [Google Scholar]
  13. Lo HH, Chang SM. Identification, characterization, and biofilm formation of clinical Chryseobacterium gleum isolates. Diagn Microbiol Infect Dis 2014; 79:298–302 [View Article]
    [Google Scholar]
  14. Im WT, Yang JE, Kim SY, Yi TH. Chryseobacterium ginsenosidimutans sp. nov., a bacterium with ginsenoside-converting activity isolated from soil of a Rhus vernicifera-cultivated field. Int J Syst Evol Microbiol 2011; 61:1430–1435 [View Article]
    [Google Scholar]
  15. Mu DS, Liang QY, Wang XM, Lu DC, Shi MJ et al. Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing. Microbiome 2018; 6:230 [View Article]
    [Google Scholar]
  16. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  17. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article]
    [Google Scholar]
  18. Du ZJ, Wang Y, Dunlap C, Rooney AP, Chen GJ. Draconibacterium orientale gen. nov., sp. nov., isolated from two distinct marine environments, and proposal of Draconibacteriaceae fam. nov. Int J Syst Evol Microbiol 2014; 64:1690–1696 [View Article]
    [Google Scholar]
  19. Montero-Calasanz MdelC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium oleae sp. nov., an efficient plant growth promoting bacterium in the rooting induction of olive tree (Olea europaea L.) cuttings and emended descriptions of the genus Chryseobacterium, C. daecheongense, C. gambrini, C. gleum, C. joostei, C. jejuense, C. luteum, C. shigense, C. taiwanense, C. ureilyticum and C. vrystaatense . Syst Appl Microbiol 2014; 37:342–350 [View Article]
    [Google Scholar]
  20. Xu XW, Wu YH, Wang CS, Oren A, Zhou PJ et al. Haloferax larsenii sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 2007; 57:717–720 [View Article]
    [Google Scholar]
  21. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  22. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  23. Yoon SH, SM H, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Mol Biol Evol 2017; 67:1613–1617
    [Google Scholar]
  24. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  25. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  26. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article]
    [Google Scholar]
  27. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  28. Zhao Z, Tu YQ, Shen X, Han SB, Zhang CY et al. Chryseobacterium lineare sp. nov., isolated from a limpid stream. Int J Syst Evol Microbiol 2017; 67:800–805 [View Article]
    [Google Scholar]
  29. Lin SY, Hameed A, Wen CZ, Liu YC, Shen FT et al. Chryseobacterium echinoideorum sp. nov., isolated from sea urchins (Tripneustes gratilla). Int J Syst Evol Microbiol 2015; 65:3985–3990 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003800
Loading
/content/journal/ijsem/10.1099/ijsem.0.003800
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error