1887

Abstract

A novel Gram-negative bacterium, designated CFH 10530, was isolated from the intestine of grass carp. The sample was collected from the aquaculture training base at the College of Fisheries, Henan Normal University, Xinxiang, PR China. Cells of strain CFH 10530 were coccoid, ovoid or short-rod-shaped, aerobic, non-spore-forming and non-motile. 16S rRNA gene sequence analysis demonstrated that strain CFH 10530 was closely related to SYSUP0003 (97.7 % sequence similarity), HN-182 (96.5 %) and DCY94 (96.1 %). The strain grew optimally at 25–28 °C, at pH 7.0 and with 0–2 % (w/v) NaCl. Cells were positive for catalase and oxidase, nitrate was reduced and HS was not produced. The isoprenoid quinone was Q-10. Major cellular fatty acids were summed feature 8, C and C3-OH. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, one unidentified aminolipid and five unidentified polar lipids. The genome size was 3 331 229 bp with a G+C content of 69.6 mol%. The average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between CFH 10530 and the other species of the genus were found to be below the recommended levels for species delineation (ANIm <85, ANIb <80 and dDDH <24 %). Based on its physiological properties, chemotaxonomic characteristics and low ANI and dDDH results, strain CFH 10530 is considered to represent a novel species for which the name sp. nov., is proposed. The type strain is CFH 10530 (=KCTC 62919=CGMCC 1.16597).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003790
2019-10-24
2019-11-19
Loading full text...

Full text loading...

References

  1. Davis DH, Doudoroff M, Stanier RY, Mandel M. Proposal to reject the genus Hydrogenomonas: taxonomic implications. Int J Syst Bacteriol 1969;19: 375– 390 [CrossRef]
    [Google Scholar]
  2. Ludwig W, Mittenhuber G, Friedrich CG. Transfer of Thiosphaera pantotropha to Paracoccus denitrificans. Int J Syst Bacteriol 1993;43: 363– 367 [CrossRef]
    [Google Scholar]
  3. Katayama Y, Hiraishi A, Kuraishi H. Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus. Microbiology 1995;141: 1469– 1477 [CrossRef]
    [Google Scholar]
  4. Liu ZP, Wang BJ, Liu XY, Dai X, Liu YH et al. Paracoccus halophilus sp. nov., isolated from marine sediment of the South China Sea, China, and emended description of genus Paracoccus Davis 1969. Int J Syst Evol Microbiol 2008;58: 257– 261 [CrossRef]
    [Google Scholar]
  5. Khan ST, Takaichi S, Harayama S. Paracoccus marinus sp. nov., an adonixanthin diglucoside-producing bacterium isolated from coastal seawater in Tokyo Bay. Int J Syst Evol Microbiol 2008;58: 383– 386 [CrossRef]
    [Google Scholar]
  6. Kim YO, Kong HJ, Park S, Kang SJ, Kim KK et al. Paracoccus fistulariae sp. nov., a lipolytic bacterium isolated from bluespotted cornetfish, Fistularia commersonii. Int J Syst Evol Microbiol 2010;60: 2908– 2912 [CrossRef]
    [Google Scholar]
  7. Kim YO, Park IS, Park S, Nam BH, Kim DG et al. Paracoccus alimentarius sp. nov., isolated from a Korean foodstuff, salted pollack. Int J Syst Evol Microbiol 2018;68: 1238– 1243 [CrossRef]
    [Google Scholar]
  8. Deng ZS, Zhao LF, Xu L, Kong ZY, Zhao P et al. Paracoccus sphaerophysae sp. nov., a siderophore-producing, endophytic bacterium isolated from root nodules of Sphaerophysa salsula. Int J Syst Evol Microbiol 2011;61: 665– 669 [CrossRef]
    [Google Scholar]
  9. Sun LN, Zhang J, Kwon SW, He J, Zhou SG et al. Paracoccus huijuniae sp. nov., an amide pesticide-degrading bacterium isolated from activated sludge of a wastewater biotreatment system. Int J Syst Evol Microbiol 2013;63: 1132– 1137 [CrossRef]
    [Google Scholar]
  10. Nguyen NL, Kim YJ, Hoang VA, Tran BT, Pham HS et al. Paracoccus panacisoli sp. nov., isolated from a forest soil cultivated with Vietnamese ginseng. Int J Syst Evol Microbiol 2015;65: 1491– 1497 [CrossRef]
    [Google Scholar]
  11. Sheu SY, Hsieh TY, Young CC, Chen W-M. Paracoccus fontiphilus sp. nov., isolated from a freshwater spring. Int J Syst Evol Microbiol 2018;68: 2054– 2060 [CrossRef]
    [Google Scholar]
  12. Singh AK, Kohli P, Mahato NK, Lal R. Paracoccus sordidisoli sp. nov., isolated from an agricultural field contaminated with hexachlorocyclohexane isomers. Int J Syst Evol Microbiol 2017;67: 4365– 4371 [CrossRef]
    [Google Scholar]
  13. Park S, Yoon SY, Jung YT, Won SM, Park DS et al. Paracoccus aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016;66: 2992– 2998 [CrossRef]
    [Google Scholar]
  14. Dominguez-Moñino I, Jurado V, Hermosin B, Saiz-Jimenez C. Paracoccus cavernae sp. nov., isolated from a show cave. Int J Syst Evol Microbiol 2016;66: 2265– 2270 [CrossRef]
    [Google Scholar]
  15. Sun X, Luo P, Li M. Paracoccus angustae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015;65: 3469– 3475 [CrossRef]
    [Google Scholar]
  16. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007;57: 1424– 1428 [CrossRef]
    [Google Scholar]
  17. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: 1613– 1617 [CrossRef]
    [Google Scholar]
  18. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Symp Ser 1999;41: 95– 98
    [Google Scholar]
  19. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23: 2947– 2948 [CrossRef]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425 [CrossRef]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17: 368– 376 [CrossRef]
    [Google Scholar]
  22. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20: 406– 416 [CrossRef]
    [Google Scholar]
  23. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33: 1870– 1874 [CrossRef]
    [Google Scholar]
  24. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16: 111– 120 [CrossRef]
    [Google Scholar]
  25. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39: 783– 791 [CrossRef]
    [Google Scholar]
  26. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012;1: 18 [CrossRef]
    [Google Scholar]
  27. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997;25: 955– 964 [CrossRef]
    [Google Scholar]
  28. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35: 3100– 3108 [CrossRef]
    [Google Scholar]
  29. Delcher AL. Glimmer release notes version 3.02. 2006
  30. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013;195: 413– 418 [CrossRef]
    [Google Scholar]
  31. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66: 1100– 1103 [CrossRef]
    [Google Scholar]
  32. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004;5: R12– 2483 [CrossRef]
    [Google Scholar]
  33. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016;32: 929– 931 [CrossRef]
    [Google Scholar]
  34. Wu M, Scott AJ. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinform 2012;28: 1033– 1034 [CrossRef]
    [Google Scholar]
  35. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32: 1792– 1797 [CrossRef]
    [Google Scholar]
  36. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000;17: 540– 552 [CrossRef]
    [Google Scholar]
  37. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2012;5: e9490 [CrossRef]
    [Google Scholar]
  38. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106: 19126– 19131 [CrossRef]
    [Google Scholar]
  39. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. Dna-Dna hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57: 81– 91 [CrossRef]
    [Google Scholar]
  40. Cerny G. Studies on the aminopeptidase test for the distinction of gram-negative from gram-positive bacteria. Eur J Appl Microbiol Biotechnol 1978;5: 113– 122 [CrossRef]
    [Google Scholar]
  41. Leifson E. Atlas of bacterial flagellation. Q Rev Biol 1960;242:
    [Google Scholar]
  42. Ming H, Yin YR, Li S, Nie GX, Yu TT et al. Thermus caliditerrae sp. nov., a novel thermophilic species isolated from a geothermal area. Int J Syst Evol Microbiol 2014;64: 650– 656 [CrossRef]
    [Google Scholar]
  43. Nie GX, Ming H, Li S, Zhou EM, Cheng J et al. Amycolatopsis dongchuanensis sp. nov., an actinobacterium isolated from soil. Int J Syst Evol Microbiol 2012;62: 2650– 2656 [CrossRef]
    [Google Scholar]
  44. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978;24: 710– 715 [CrossRef]
    [Google Scholar]
  45. Williams ST, Goodfellow M, Alderson G. Genus Streptomyces Waksman and Henrici 1943, 339AL In Williams ST, Sharpe ME, Holt JG. eds Bergey’s Manual of Systematic Bacteriology4 Baltimore: Williams & Wilkins, Baltimore; 1989; pp 2452– 2492
    [Google Scholar]
  46. Gordon RE, Barnett DA, Handerhan JE, PANG CHN. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin strain. Int J Syst Bacteriol 1974;24: 54– 63 [CrossRef]
    [Google Scholar]
  47. Groth I, Rodríguez C, Schütze B, Schmitz P, Leistner E et al. Five novel Kitasatospora species from soil: Kitasatospora arboriphila sp. nov., K. gansuensis sp. nov., K. nipponensis sp. nov., K. paranensis sp. nov. and K. terrestris sp. nov. Int J Syst Evol Microbiol 2004;54: 2121– 2129 [CrossRef]
    [Google Scholar]
  48. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100: 221– 230 [CrossRef]
    [Google Scholar]
  49. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982;5: 2359– 2367 [CrossRef]
    [Google Scholar]
  50. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983;54: 31– 36 [CrossRef]
    [Google Scholar]
  51. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979;47: 87– 95 [CrossRef]
    [Google Scholar]
  52. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980;48: 459– 470 [CrossRef]
    [Google Scholar]
  53. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI technical note 101. Newark: Microbial ID, Inc; 1990
    [Google Scholar]
  54. Zhang H, Li YQ, Xiao M, Fang BZ, Alkhalifah DHM et al. Description of Paracoccus endophyticus sp. nov., isolated from Gastrodia elata Blume. Int J Syst Evol Microbiol 2019;69: 261– 265 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003790
Loading
/content/journal/ijsem/10.1099/ijsem.0.003790
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error