1887

Abstract

We here present annotated lists of names of taxa of prokaryotes with ranks between subspecies and class, proposed between the mid-1990s, when the provisional status of taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of taxa with additions and corrections to the current lists to be published periodically in the , may serve as the basis for the valid publication of the names if and when the current proposals to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes.

Keyword(s): Candidatus , names and list
Funding
This study was supported by the:
  • Maria Chuvochina , Australian Research Council Laureate Fellowship , (Award FL150100038)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003789
2020-06-30
2020-07-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/10.1099/ijsem.0.003789/ijsem003789.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003789&mimeType=html&fmt=ahah

References

  1. Murray RG, Schleifer KH. Taxonomic notes: a proposal for recording the properties of putative taxa of procaryotes. Int J Syst Bacteriol 1994; 44: 174 176 [CrossRef] [PubMed]
    [Google Scholar]
  2. Frederiksen W. Judicial Commission of the International Committee on Systematic Bacteriology: minutes of the meetings, 2 and 6 July 1994, Prague, Czech Republic. Int J Syst Bacteriol 1995; 45: 195 196 [CrossRef]
    [Google Scholar]
  3. Murray RG, Stackebrandt E. Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. Int J Syst Bacteriol 1995; 45: 186 187 [CrossRef] [PubMed]
    [Google Scholar]
  4. Labeda DP. Judicial Commission of the International Committee on Systematic Bacteriology VIIIth international Congress of microbiology and applied bacteriology: minutes of the meetings, 17 and 22 August 1996, Jerusalem, Israel. Int J Syst Bacteriol 1997; 47: 240 241 [CrossRef]
    [Google Scholar]
  5. Parker CT, Tindall BJ, Garrity GM. International Code of Nomenclature of Prokaryotes (2008 Revision). Int J Syst Evol Microbiol 2019; 69: S1 S111
    [Google Scholar]
  6. Whitman WB. Modest proposals to expand the type material for naming of prokaryotes. Int J Syst Evol Microbiol 2016; 66: 2108 2112 [CrossRef] [PubMed]
    [Google Scholar]
  7. Whitman WB, Sutcliffe IC, Rossello-Mora R. Proposal for changes in the International Code of Nomenclature of Prokaryotes: granting priority to Candidatus names. Int J Syst Evol Microbiol 2019; 69: 2174 2175 [CrossRef] [PubMed]
    [Google Scholar]
  8. Oren A, da Costa MS, Garrity GM, Rainey FA, Rosselló-Móra R et al. Proposal to include the rank of phylum in the International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2015; 65: 4284 4287 [CrossRef] [PubMed]
    [Google Scholar]
  9. Whitman WB, Oren A, Chuvochina M, da Costa MS, Garrity GM et al. Proposal of the suffix -ota to denote phyla. Addendum to 'Proposal to include the rank of phylum in the International Code of Nomenclature of Prokaryotes'. Int J Syst Evol Microbiol 2018; 68: 967 969 [CrossRef] [PubMed]
    [Google Scholar]
  10. Oren A. A plea for linguistic accuracy - also for Candidatus taxa. Int J Syst Evol Microbiol 2017; 67: 1085 1094 [CrossRef] [PubMed]
    [Google Scholar]
  11. Oren A, Vandamme P, Schink B. Notes on the use of Greek word roots in genus and species names of prokaryotes. Int J Syst Evol Microbiol 2016; 66: 2129 2140 [CrossRef] [PubMed]
    [Google Scholar]
  12. Oren A. Proposal to modify rule 10A of the International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2014; 64: 3919 [CrossRef]
    [Google Scholar]
  13. Skerman VBD, Sneath PHA, McGowan V. Approved Lists of bacterial names. Int J Syst Evol Microbiol 1980; 30: 225 420 [CrossRef]
    [Google Scholar]
  14. Momper L, Aronson HS, Amend JP. Genomic description of 'Candidatus Abyssubacteria,' a novel subsurface lineage within the candidate phylum H ydrogened entes . Front Microbiol 2018; 9: 1993 [CrossRef] [PubMed]
    [Google Scholar]
  15. Kirkegaard RH, Dueholm MS, McIlroy SJ, Nierychlo M, Karst SM et al. Genomic insights into members of the candidate phylum Hyd24-12 common in mesophilic anaerobic digesters. ISME J 2016; 10: 2352 2364 [CrossRef] [PubMed]
    [Google Scholar]
  16. Emerson D, Rentz JA, Lilburn TG, Davis RE, Aldrich H et al. A novel lineage of Proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities. PLoS One 2007; 2: e667 [CrossRef] [PubMed]
    [Google Scholar]
  17. Makita H, Tanaka E, Mitsunobu S, Miyazaki M, Nunoura T et al. Mariprofundus micogutta sp. nov., a novel iron-oxidizing zetaproteobacterium isolated from a deep-sea hydrothermal field at the Bayonnaise knoll of the Izu-Ogasawara arc, and a description of Mariprofundales ord. nov. and Zetaproteobacteria classis nov. Arch Microbiol 2017; 199: 335 346 [CrossRef] [PubMed]
    [Google Scholar]
  18. Nobu MK, Narihiro T, Kuroda K, Mei R, Liu W-T. Chasing the elusive E uryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME J 2016; 10: 2478 2487 [CrossRef] [PubMed]
    [Google Scholar]
  19. Berghuis BA, Yu FB, Schulz F, Blainey PC, Woyke T et al. Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota reveals the shared ancestry of all methanogens. Proc Natl Acad Sci USA 2019; 116: 5037 5044 [CrossRef] [PubMed]
    [Google Scholar]
  20. Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraerearchaeota . Nat Microbiol 2016; 1: 16170 [CrossRef]
    [Google Scholar]
  21. Sekiguchi Y, Ohashi A, Parks DH, Yamauchi T, Tyson GW et al. First genomic insights into members of a candidate bacterial phylum responsible for wastewater bulking. PeerJ 2015; 3: e740 [CrossRef] [PubMed]
    [Google Scholar]
  22. Ward LM. Microbial evolution and the rise of oxygen: the roles of contingency and context in shaping the biosphere through time Doctoral dissertation, California Institute of Technology; 2017
    [Google Scholar]
  23. Ward LM, Hemp J, Shih PM, McGlynn SE, Fischer WW. Evolution of phototrophy in the Chloroflexi phylum driven by horizontal gene transfer. Front Microbiol 2018; 9: 260 [CrossRef] [PubMed]
    [Google Scholar]
  24. Ghai R, Mizuno CM, Picazo A, Camacho A, Rodriguez-Valera F. Metagenomics uncovers a new group of low GC and ultra-small marine actinobacteria. Sci Rep 2013; 3: 2471 [CrossRef] [PubMed]
    [Google Scholar]
  25. Probst AJ, Weinmaier T, Raymann K, Perras A, Emerson JB et al. Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface. Nat Commun 2014; 5: 5497 [CrossRef] [PubMed]
    [Google Scholar]
  26. Jetten MSM, Op den Camp HJM, Kuenen JG, Strous M. “Candidatus Brocadiales” ord. nov. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ. (editors) Bergey’s Manual of Systematic Bacteriology. The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes 4 , 2nd ed. New York: Springer; 2011 p 918
    [Google Scholar]
  27. Di Rienzi SC, Sharon I, Wrighton KC, Koren O, Hug LA et al. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to cyanobacteria. Elife 2013; 2: e01102 [CrossRef] [PubMed]
    [Google Scholar]
  28. Soo RM, Skennerton CT, Sekiguchi Y, Imelfort M, Paech SJ et al. An expanded genomic representation of the phylum Cyanobacteria . Genome Biol Evol 2014; 6: 1031 1045 [CrossRef]
    [Google Scholar]
  29. Neuenschwander SM, Ghai R, Pernthaler J, Salcher MM. Microdiversification in genome-streamlined ubiquitous freshwater actinobacteria. ISME J 2018; 12: 185 198 [CrossRef]
    [Google Scholar]
  30. de la Torre JR, Walker CB, Ingalls AE, Könneke M, Stahl DA. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol 2008; 10: 810 818 [CrossRef] [PubMed]
    [Google Scholar]
  31. Prosser JI, Nicol G. Candidatus Nitrosotaleales. Chapter obm00123. Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Bergey’s Manual Trust; 2016
    [Google Scholar]
  32. Grote J, Thrash JC, Huggett MJ, Landry ZC, Carini P et al. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. mBio 2012; 3: e00252 12 [CrossRef]
    [Google Scholar]
  33. Jetten MSM, Op den Camp HJM, Kuenen JG, Strous M. “Candidatus Brocadiaceae” fam. nov. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ. (editors) Bergey’s Manual of Systematic Bacteriology. The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes 4 , 2nd ed. New York: Springer; 2011 pp 918 925
    [Google Scholar]
  34. Horn M. Family II. “Candidatus Clavichlamydiaceae”. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ. (editors) Bergey’s Manual of Systematic Bacteriology. The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes 4 , 2nd ed. New York: Springer; 2011 p 865
    [Google Scholar]
  35. McIlroy SJ, Albertsen M, Andresen EK, Saunders AM, Kristiansen R et al. 'Candidatus Competibacter'-lineage genomes retrieved from metagenomes reveal functional metabolic diversity. ISME J 2014; 8: 613 624 [CrossRef] [PubMed]
    [Google Scholar]
  36. Thomas V, Casson N, Greub G. Criblamydia sequanensis, a new intracellular Chlamydiales isolated from Seine river water using amoebal co-culture. Environ Microbiol 2006; 8: 2125 2135 [CrossRef]
    [Google Scholar]
  37. Krukenberg V, Harding K, Richter M, Glöckner FO, Gruber-Vodicka HR et al. Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane. Environ Microbiol 2016; 18: 3073 3091 [CrossRef] [PubMed]
    [Google Scholar]
  38. Szokoli F, Castelli M, Sabaneyeva E, Schrallhammer M, Krenek S et al. Disentangling the taxonomy of Rickettsiales and description of two novel symbionts (“Candidatus Bealeia paramacronuclearis” and “Candidatus Fokinia cryptica”) sharing the cytoplasm of the ciliate protist Paramecium biaurelia . Appl Environ Microbiol 2016; 82: 7236 7247 [CrossRef]
    [Google Scholar]
  39. Ormerod KL, Wood DLA, Lachner N, Gellatly SL, Daly JN et al. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome 2016; 4: 36 [CrossRef]
    [Google Scholar]
  40. Mondav R, Woodcroft BJ, Kim EH, McCalley CK, Hodgkins SB et al. Discovery of a novel methanogen prevalent in thawing permafrost. Nat Commun 2014; 5: 3212 [CrossRef] [PubMed]
    [Google Scholar]
  41. Haroon MF, Hu S, Shi Y, Imelfort M, Keller J et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 2013; 500: 567 570 [CrossRef] [PubMed]
    [Google Scholar]
  42. Montagna M, Sassera D, Epis S, Bazzocchi C, Vannini C et al. "Candidatus Midichloriaceae" fam. nov. (Rickettsiales), an ecologically widespread clade of intracellular Alphaproteobacteria. Appl Environ Microbiol 2013; 79: 3241 3248 [CrossRef] [PubMed]
    [Google Scholar]
  43. Herbold CW, Palatinszky M, Wagner M. Candidatus Nitrosotenuaceae. Chapter fbm00263. Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Bergey’s Manual Trust; 2016
    [Google Scholar]
  44. Hess S, Suthaus A, Melkonian M. "Candidatus Finniella" (Rickettsiales, Alphaproteobacteria), novel endosymbionts of viridiraptorid amoeboflagellates (Cercozoa, Rhizaria). Appl Environ Microbiol 2016; 82: 659 670 [CrossRef] [PubMed]
    [Google Scholar]
  45. Stride MC, Polkinghorne A, Miller TL, Groff JM, Lapatra SE et al. Molecular characterization of "Candidatus Parilichlamydia carangidicola," a novel Chlamydia-like epitheliocystis agent in yellowtail kingfish, Seriola lalandi (Valenciennes), and the proposal of a new family, "Candidatus Parilichlamydiaceae" fam. nov. (order Chlamydiales). Appl Environ Microbiol 2013; 79: 1590 1597 [CrossRef] [PubMed]
    [Google Scholar]
  46. Thrash JC, Boyd A, Huggett MJ, Grote J, Carini P et al. Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade. Sci Rep 2011; 1: 13 [CrossRef]
    [Google Scholar]
  47. Dittami SM, Barbeyron T, Boyen C, Cambefort J, Collet G et al. Genome and metabolic network of "Candidatus Phaeomarinobacter ectocarpi" Ec32, a new candidate genus of Alphaproteobacteria frequently associated with brown algae. Front Genet 2014; 5: 241 [CrossRef] [PubMed]
    [Google Scholar]
  48. Horn M. Family V. “Candidatus Piscichlamydiaceae”. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ et al. (editors) Bergey’s Manual of Systematic Bacteriology . The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes 4 , 2nd ed. New York: Springer; 2011 pp 872 873
    [Google Scholar]
  49. Kroer P, Kjeldsen KU, Nyengaard JR, Schramm A, Funch P. A novel extracellular gut symbiont in the marine worm Priapulus caudatus (Priapulida) reveals an alphaproteobacterial symbiont clade of the Ecdysozoa. Front Microbiol 2016; 7: 539 [CrossRef]
    [Google Scholar]
  50. Hesselmann RPX, Werlen C, Hahn D, van der Meer JR, Zehnder AJB. Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Syst Appl Microbiol 1999; 22: 454 465 [CrossRef] [PubMed]
    [Google Scholar]
  51. Hao L, McIlroy SJ, Kirkegaard RH, Karst SM, Fernando WEY et al. Novel prosthecate bacteria from the candidate phylum Acetothermia. ISME J 2018; 12: 2225 2237 [CrossRef] [PubMed]
    [Google Scholar]
  52. Takami H, Noguchi H, Takaki Y, Uchiyama I, Toyoda A et al. A deeply branching thermophilic bacterium with an ancient acetyl-CoA pathway dominates a subsurface ecosystem. PLoS One 2012; 7: e30559 [CrossRef] [PubMed]
    [Google Scholar]
  53. Reysenbach A-L, Liu Y, Banta AB, Beveridge TJ, Kirshtein JD et al. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature 2006; 442: 444 447 [CrossRef]
    [Google Scholar]
  54. Steigen A, Nylund A, Karlsbakk E, Akoll P, Fiksdal IU et al. 'Cand. Actinochlamydia clariae' gen. nov., sp. nov., a unique intracellular bacterium causing epitheliocystis in catfish (Clarias gariepinus) in Uganda. PLoS One 2013; 8: e66840 [CrossRef] [PubMed]
    [Google Scholar]
  55. Darby AC, Chandler SM, Welburn SC, Douglas AE. Aphid-symbiotic bacteria cultured in insect cell lines. Appl Environ Microbiol 2005; 71: 4833 4839 [CrossRef] [PubMed]
    [Google Scholar]
  56. Ikeda-Ohtsubo W, Strassert JFH, Köhler T, Mikaelyan A, Gregor I et al. 'Candidatus Adiutrix intracellularis', an endosymbiont of termite gut flagellates, is the first representative of a deep-branching clade of Deltaproteobacteria and a putative homoacetogen. Environ Microbiol 2016; 18: 2548 2564 [CrossRef] [PubMed]
    [Google Scholar]
  57. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 2013; 499: 431 437 [CrossRef]
    [Google Scholar]
  58. Solden LM, Hoyt DW, Collins WB, Plank JE, Daly RA et al. New roles in hemicellulosic sugar fermentation for the uncultivated Bacteroidetes family BS11. ISME J 2017; 11: 691 703 [CrossRef]
    [Google Scholar]
  59. Hinck S, Mußmann M, Salman V, Neu TR, Lenk S et al. Vacuolated Beggiatoa-like filaments from different hypersaline environments form a novel genus. Environ Microbiol 2011; 13: 3194 3205 [CrossRef]
    [Google Scholar]
  60. Eshoo MW, Carolan HE, Massire C, Chou DM, Crowder CD et al. Survey of Ixodes pacificus ticks in California reveals a diversity of microorganisms and a novel and widespread Anaplasmataceae species. PLoS One 2015; 10: e0135828 [CrossRef] [PubMed]
    [Google Scholar]
  61. Paster BJ, Dewhirst FE. Phylogenetic foundation of spirochetes. J Mol Microbiol Biotechnol 2000; 2: 341 344 [PubMed]
    [Google Scholar]
  62. Šikutová S, Halouzka J, Mendel J, Knoz J, Rudolf I. Novel spirochetes isolated from mosquitoes and black flies in the Czech Republic. J Vector Ecol 2010; 35: 50 55 [CrossRef]
    [Google Scholar]
  63. Greub G, La Scola B, Raoult D. Amoebae-resisting bacteria isolated from human nasal swabs by amoebal coculture. Emerg Infect Dis 2004; 10: 470 477 [CrossRef] [PubMed]
    [Google Scholar]
  64. Horn M, Harzenetter MD, Linner T, Schmid EN, Müller KD et al. Members of the Cytophaga-Flavobacterium-Bacteroides phylum as intracellular bacteria of acanthamoebae: proposal of 'Candidatus Amoebophilus asiaticus'. Environ Microbiol 2001; 3: 440 449 [CrossRef] [PubMed]
    [Google Scholar]
  65. Martel A, Adriaensen C, Bogaerts S, Ducatelle R, Favoreel H et al. Novel Chlamydiaceae disease in captive salamanders. Emerg Infect Dis 2012; 18: 1020 1022 [CrossRef] [PubMed]
    [Google Scholar]
  66. Vannini C, Ferrantini F, Schleifer K-H, Ludwig W, Verni F et al. "Candidatus Anadelfobacter veles" and "Candidatus Cyrtobacter comes," two new Rickettsiales species hosted by the protist ciliate Euplotes harpa (Ciliophora, Spirotrichea). Appl Environ Microbiol 2010; 76: 4047 4054 [CrossRef] [PubMed]
    [Google Scholar]
  67. Kartal B, Rattray J, van Niftrik LA, van de Vossenberg J, Schmid MC et al. Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol 2007; 30: 39 49 [CrossRef] [PubMed]
    [Google Scholar]
  68. Khramenkov SV, Kozlov MN, Kevbrina MV, Dorofeev AG, Kazakova EA et al. A novel bacterium carrying out anaerobic ammonium oxidation in a reactor for biological treatment of the filtrate of wastewater fermented sludge. Microbiology 2013; 82: 628 636 [CrossRef]
    [Google Scholar]
  69. Strassert JFH, Köhler T, Wienemann THG, Ikeda-Ohtsubo W, Faivre N et al. Candidatus Ancillula trichonymphae’, a novel lineage of endosymbiotic Actinobacteria in termite gut flagellates of the genus Trichonympha . Environ Microbiol 2012; 14: 3259 3270 [CrossRef]
    [Google Scholar]
  70. Hahn MW. Description of seven candidate species affiliated with the phylum Actinobacteria, representing planktonic freshwater bacteria. Int J Syst Evol Microbiol 2009; 59: 112 117 [CrossRef] [PubMed]
    [Google Scholar]
  71. Hahn MW, Schauer M. 'Candidatus Aquirestis calciphila' and 'Candidatus Haliscomenobacter calcifugiens', filamentous, planktonic bacteria inhabiting natural lakes. Int J Syst Evol Microbiol 2007; 57: 936 940 [CrossRef] [PubMed]
    [Google Scholar]
  72. Bojko J, Dunn AM, Stebbing PD, van Aerle R, Bacela-Spychalska K et al. 'Candidatus Aquirickettsiella gammari' (Gammaproteobacteria: Legionellales: Coxiellaceae): a bacterial pathogen of the freshwater crustacean Gammarus fossarum (Malacostraca: Amphipoda). J Invertebr Pathol 2018; 156: 41 53 [CrossRef] [PubMed]
    [Google Scholar]
  73. Martijn J, Schulz F, Zaremba-Niedzwiedzka K, Viklund J, Stepanauskas R et al. Single-cell genomics of a rare environmental alphaproteobacterium provides unique insights into Rickettsiaceae evolution. ISME J 2015; 9: 2373 2385 [CrossRef] [PubMed]
    [Google Scholar]
  74. Desai MS, Strassert JFH, Meuser K, Hertel H, Ikeda-Ohtsubo W et al. Strict cospeciation of devescovinid flagellates and Bacteroidales ectosymbionts in the gut of dry-wood termites (Kalotermitidae). Environ Microbiol 2010; 12: 2120 2132 [CrossRef] [PubMed]
    [Google Scholar]
  75. Hosokawa T, Nikoh N, Koga R, Satô M, Tanahashi M et al. Reductive genome evolution, host-symbiont co-speciation and uterine transmission of endosymbiotic bacteria in bat flies. ISME J 2012; 6: 577 587 [CrossRef] [PubMed]
    [Google Scholar]
  76. Thompson AW, Foster RA, Krupke A, Carter BJ, Musat N et al. Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 2012; 337: 1546 1550 [CrossRef]
    [Google Scholar]
  77. Hongoh Y, Sharma VK, Prakash T, Noda S, Toh H et al. Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science 2008; 322: 1108 1109 [CrossRef] [PubMed]
    [Google Scholar]
  78. Kostanjšek R, Štrus J, Avguštin G. "Candidatus Bacilloplasma," a novel lineage of Mollicutes associated with the hindgut wall of the terrestrial isopod Porcellio scaber (Crustacea: Isopoda). Appl Environ Microbiol 2007; 73: 5566 5573 [CrossRef] [PubMed]
    [Google Scholar]
  79. Senra MVX, Dias RJP, Castelli M, Silva-Neto ID, Verni F et al. A house for two--double bacterial infection in Euplotes woodruffi Sq1 (Ciliophora, Euplotia) sampled in southeastern Brazil. Microb Ecol 2016; 71: 505 517 [CrossRef] [PubMed]
    [Google Scholar]
  80. Mehari YT, Jason Hayes B, Redding KS, Mariappan PVG, Gunderson JH et al. Description of 'Candidatus Berkiella aquae' and 'Candidatus Berkiella cookevillensis', two intranuclear bacteria of freshwater amoebae. Int J Syst Evol Microbiol 2016; 66: 536 541 [CrossRef] [PubMed]
    [Google Scholar]
  81. Sauer C, Stackebrandt E, Gadau J, Hölldobler B, Gross R. Systematic relationships and cospeciation of bacterial endosymbionts and their carpenter ant host species: proposal of the new taxon Candidatus Blochmannia gen. nov. Int J Syst Evol Microbiol 2000; 50: 1877 1886 [CrossRef] [PubMed]
    [Google Scholar]
  82. Toenshoff ER, Kvellestad A, Mitchell SO, Steinum T, Falk K et al. A novel betaproteobacterial agent of gill epitheliocystis in seawater farmed Atlantic salmon (Salmo salar). PLoS One 2012; 7: e32696 [CrossRef]
    [Google Scholar]
  83. McIlroy SJ, Kirkegaard RH, Dueholm MS, Fernando E, Karst SM et al. Culture-independent analyses reveal novel Anaerolineaceae as abundant primary fermenters in anaerobic digesters treating waste activated sludge. Front Microbiol 2017; 8: 1134 [CrossRef] [PubMed]
    [Google Scholar]
  84. Jetten MS, Wagner M, Fuerst J, van Loosdrecht M, Kuenen G et al. Microbiology and application of the anaerobic ammonium oxidation ('anammox') process. Curr Opin Biotechnol 2001; 12: 283 288 [CrossRef] [PubMed]
    [Google Scholar]
  85. Nunoura T, Takaki Y, Kakuta J, Nishi S, Sugahara J et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res 2011; 39: 3204 3223 [CrossRef] [PubMed]
    [Google Scholar]
  86. Dodsworth JA, Blainey PC, Murugapiran SK, Swingley WD, Ross CA et al. Single-Cell and metagenomic analyses indicate a fermentative and saccharolytic lifestyle for members of the OP9 lineage. Nat Commun 2013; 4: 1854 [CrossRef] [PubMed]
    [Google Scholar]
  87. Beam JP, Jay ZJ, Schmid MC, Rusch DB, Romine MF et al. Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous 'streamer' community. ISME J 2016; 10: 210 224 [CrossRef] [PubMed]
    [Google Scholar]
  88. Baker BJ, Hugenholtz P, Dawson SC, Banfield JF. Extremely acidophilic protists from acid mine drainage host Rickettsiales-lineage endosymbionts that have intervening sequences in their 16S rRNA genes. Appl Environ Microbiol 2003; 69: 5512 5518 [CrossRef] [PubMed]
    [Google Scholar]
  89. Kadnikov VV, Mardanov AV, Ivasenko DA, Antsiferov DV, Beletsky AV et al. Lignite coal burning seam in the remote Altai Mountains harbors a hydrogen-driven thermophilic microbial community. Sci Rep 2018; 8: 6730 [CrossRef] [PubMed]
    [Google Scholar]
  90. Zchori-Fein E, Perlman SJ, Kelly SE, Katzir N, Hunter MS. Characterization of a 'Bacteroidetes' symbiont in Encarsia wasps (Hymenoptera: Aphelinidae): proposal of 'Candidatus Cardinium hertigii'. Int J Syst Evol Microbiol 2004; 54: 961 968 [CrossRef]
    [Google Scholar]
  91. Thao ML, Moran NA, Abbot P, Brennan EB, Burckhardt DH et al. Cospeciation of psyllids and their primary prokaryotic endosymbionts. Appl Environ Microbiol 2000; 66: 2898 2905 [CrossRef]
    [Google Scholar]
  92. Levantesi C, Beimfohr C, Geurkink B, Rossetti S, Thelen K et al. Filamentous Alphaproteobacteria associated with bulking in industrial wastewater treatment plants. Syst Appl Microbiol 2004; 27: 716 727 [CrossRef] [PubMed]
    [Google Scholar]
  93. Preston CM, Wu KY, Molinski TF, DeLong EF. A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc Natl Acad Sci USA 1996; 93: 6241 6246 [CrossRef] [PubMed]
    [Google Scholar]
  94. Thiel V, Wood JM, Olsen MT, Tank M, Klatt CG et al. The dark side of the Mushroom Spring microbial mat: Life in the shadow of chlorophototrophs. I. Microbial diversity based on 16S rRNA gene amplicons and metagenomics sequencing. Front Microbiol 2016; 7: 919 [CrossRef] [PubMed]
    [Google Scholar]
  95. Gorlenko VM, Bryantseva IA, Kalashnikov AM, Gaisin VA, Sukhacheva MV et al. Candidatus ‘Chloroploca asiatica’ gen. nov., sp. nov., a new mesophilic filamentous anoxygenic phototrophic bacterium. Microbiology 2014; 83: 838 848 [CrossRef]
    [Google Scholar]
  96. Klappenbach JA, Pierson BK. Phylogenetic and physiological characterization of a filamentous anoxygenic photoautotrophic bacterium ' Candidatus Chlorothrix halophila' gen. nov., sp. nov., recovered from hypersaline microbial mats. Arch Microbiol 2004; 181: 17 25 [CrossRef] [PubMed]
    [Google Scholar]
  97. Eloe-Fadrosh EA, Paez-Espino D, Jarett J, Dunfield PF, Hedlund BP et al. Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nat Commun 2016; 7: 10476 [CrossRef] [PubMed]
    [Google Scholar]
  98. Horn M. Genus I. “Candidatus Clavichlamydia” corrig. Karlsen, Nylund, Watanabe, Helvik, Nylund and Plarre 2008. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ et al. (editors) Bergey’s Manual of Systematic Bacteriology. The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes 4 , 2nd ed. New York: Springer; 2011 pp 918 919
    [Google Scholar]
  99. Karlsen M, Nylund A, Watanabe K, Helvik JV, Nylund S et al. Characterization of 'Candidatus Clavochlamydia salmonicola': an intracellular bacterium infecting salmonid fish. Environ Microbiol 2008; 10: 208 218 [CrossRef] [PubMed]
    [Google Scholar]
  100. Pelletier E, Kreimeyer A, Bocs S, Rouy Z, Gyapay G et al. "Candidatus Cloacamonas acidaminovorans": genome sequence reconstruction provides a first glimpse of a new bacterial division. J Bacteriol 2008; 190: 2572 2579 [CrossRef]
    [Google Scholar]
  101. Tsao H-F, Scheikl U, Volland J-M, Köhsler M, Bright M et al. Candidatus Cochliophilus cryoturris’ (Coxiellaceae), a symbiont of the testate amoeba Cochliopodium minus . Sci Rep 2017; 7: 3394 [CrossRef]
    [Google Scholar]
  102. Jacobi CA, Reichenbach H, Tindall BJ, Stackebrandt E. "Candidatus comitans," a bacterium living in coculture with Chondromyces crocatus (Myxobacteria). Int J Syst Bacteriol 1996; 46: 119 122 [CrossRef] [PubMed]
    [Google Scholar]
  103. Crocetti GR, Bond PL, Banfield JF, Blackall LL, Keller J. Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. Microbiology 2002; 148: 3353 3364 [CrossRef]
    [Google Scholar]
  104. Zhilina TN, Zavarzina DG, Kolganova TV, Tourova TP, Zavarzin GA. Candidatus Contubernalis alkalaceticum,” an obligately syntrophic alkaliphilic bacterium capable of anaerobic acetate oxidation in a coculture with Desulfonatronum cooperativum . Microbiology 2005; 74: 695 703 [CrossRef]
    [Google Scholar]
  105. Ferrantini F, Fokin SI, Modeo L, Andreoli I, Dini F et al. "Candidatus Cryptoprodotis polytropus," a novel Rickettsia-like organism in the ciliated protist Pseudomicrothorax dubius (Ciliophora, Nassophorea). J Eukaryot Microbiol 2009; 56: 119 129 [CrossRef] [PubMed]
    [Google Scholar]
  106. Toju H, Hosokawa T, Koga R, Nikoh N, Meng XY et al. "Candidatus Curculioniphilus buchneri," a novel clade of bacterial endocellular symbionts from weevils of the genus Curculio . Appl Environ Microbiol 2010; 76: 275 282 [CrossRef]
    [Google Scholar]
  107. Ramírez-Puebla ST, Rosenblueth M, Chávez-Moreno CK, de Lyra MCCP, Tecante A et al. Molecular phylogeny of the genus Dactylopius (Hemiptera: Dactylopiidae) and identification of the symbiotic bacteria. Environ Entomol 2010; 39: 1178 1183 [CrossRef] [PubMed]
    [Google Scholar]
  108. Boscaro V, Petroni G, Ristori A, Verni F, Vannini C. "Candidatus Defluviella procrastinata" and "Candidatus Cyrtobacter zanobii", two novel ciliate endosymbionts belonging to the "Midichloria clade". Microb Ecol 2013; 65: 302 310 [CrossRef] [PubMed]
    [Google Scholar]
  109. Sorokin DY, Chernyh NA. Candidatus Desulfonatronobulbus propionicus’: a first haloalkaliphilic member of the order Syntrophobacterales from soda lakes. Extremophiles 2016; 20: 895 901 [CrossRef]
    [Google Scholar]
  110. Chivian D, Brodie EL, Alm EJ, Culley DE, Dehal PS et al. Environmental genomics reveals a single-species ecosystem deep within earth. Science 2008; 322: 275 278 [CrossRef] [PubMed]
    [Google Scholar]
  111. Kleindienst S, Higgins SA, Tsementzi D, Chen G, Konstantinidis KT et al. 'Candidatus Dichloromethanomonas elyunquensis' gen. nov., sp. nov., a dichloromethane-degrading anaerobe of the Peptococcaceae family. Syst Appl Microbiol 2017; 40: 150 159 [CrossRef] [PubMed]
    [Google Scholar]
  112. Husnik F, McCutcheon JP. Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis. Proc Natl Acad Sci USA 2016; 113: E5416 E5424 [CrossRef] [PubMed]
    [Google Scholar]
  113. Thompson CL, Vier R, Mikaelyan A, Wienemann T, Brune A. ‘Candidatus Arthromitus’ revised: segmented filamentous bacteria in arthropod guts are members of Lachnospiraceae . Environ Microbiol 2012; 14: 1454 1465 [CrossRef]
    [Google Scholar]
  114. Toenshoff ER, Penz T, Narzt T, Collingro A, Schmitz-Esser S et al. Bacteriocyte-associated gammaproteobacterial symbionts of the Adelges nordmannianae/piceae complex (Hemiptera: Adelgidae). ISME J 2012; 6: 384 396 [CrossRef]
    [Google Scholar]
  115. Trojan D, Schreiber L, Bjerg JT, Bøggild A, Yang T et al. A taxonomic framework for cable bacteria and proposal of the candidate genera Electrothrix and Electronema . Syst Appl Microbiol 2016; 39: 297 306 [CrossRef]
    [Google Scholar]
  116. Moss C, Green DH, Pérez B, Velasco A, Henríquez R et al. Intracellular bacteria associated with the ascidian Ecteinascidia turbinata: phylogenetic and in situ hybridisation analysis. Mar Biol 2003; 143: 99 110 [CrossRef]
    [Google Scholar]
  117. Haygood MG, Davidson SK. Small-subunit rRNA genes and in situ hybridization with oligonucleotides specific for the bacterial symbionts in the larvae of the bryozoan Bugula neritina and proposal of "Candidatus endobugula sertula". Appl Environ Microbiol 1997; 63: 4612 4616 [PubMed]
    [Google Scholar]
  118. Kwan JC, Donia MS, Han AW, Hirose E, Haygood MG et al. Genome streamlining and chemical defense in a coral reef symbiosis. Proc Natl Acad Sci USA 2012; 109: 20655 20660 [CrossRef] [PubMed]
    [Google Scholar]
  119. Zielinski FU, Pernthaler A, Duperron S, Raggi L, Giere O et al. Widespread occurrence of an intranuclear bacterial parasite in vent and seep bathymodiolin mussels. Environ Microbiol 2009; 11: 1150 1167 [CrossRef]
    [Google Scholar]
  120. Robidart JC, Bench SR, Feldman RA, Novoradovsky A, Podell SB et al. Metabolic versatility of the Riftia pachyptila endosymbiont revealed through metagenomics. Environ Microbiol 2008; 10: 727 737 [CrossRef]
    [Google Scholar]
  121. Anderson CM, Haygood MG. Alpha-proteobacterial symbionts of marine bryozoans in the genus Watersipora . Appl Environ Microbiol 2007; 73: 303 311 [CrossRef] [PubMed]
    [Google Scholar]
  122. Schmidt EW, Obraztsova AY, Davidson SK, Faulkner DJ, Haygood MG. Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel δ-proteobacterium, "Candidatus Entotheonella palauensis". Marine Biology 2000; 136: 969 977 [CrossRef]
    [Google Scholar]
  123. Xia Y, Kong Y, Thomsen TR, Halkjaer Nielsen P, Nielsen PH. Identification and ecophysiological characterization of epiphytic protein-hydrolyzing saprospiraceae ("Candidatus Epiflobacter" spp.) in activated sludge. Appl Environ Microbiol 2008; 74: 2229 2238 [CrossRef] [PubMed]
    [Google Scholar]
  124. Cho JC, Janssen PH, Costa KC, Hedlund BP. Class II. Opitutae Choo, Lee, Song and Cho 2007, 535VP . In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ. (editors) Bergey’s Manual of Systematic Bacteriology. The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes 4 , 2nd ed. New York: Springer; 2010 pp 817 819
    [Google Scholar]
  125. Bauer AP, Ludwig W, Schleifer KH, Petroni G. Comparative molecular phylogeny of free-living and symbiotic Verrucomicrobia. 2005; Unpublished
  126. Ngugi DK, Miyake S, Cahill M, Vinu M, Hackmann TJ et al. Genomic diversification of giant enteric symbionts reflects host dietary lifestyles. Proc Natl Acad Sci USA 2017; 114: E7592 E7601 [CrossRef] [PubMed]
    [Google Scholar]
  127. Montgomery WL, Pollak PE. Epulopiscium fishelsoni n. g., n. sp., a protist of uncertain taxonomic affinities from the gut of a herbivorous reef fish. J Protozool 1988; 35: 565 569 [CrossRef]
    [Google Scholar]
  128. Bertin PN, Heinrich-Salmeron A, Pelletier E, Goulhen-Chollet F, Arsène-Ploetze F et al. Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta- and proteo-genomics. ISME J 2011; 5: 1735 1747 [CrossRef] [PubMed]
    [Google Scholar]
  129. Szokoli F, Sabaneyeva E, Castelli M, Krenek S, Schrallhammer M et al. "Candidatus Fokinia solitaria", a novel "stand-alone" symbiotic lineage of Midichloriaceae (Rickettsiales). PLoS One 2016; 11: e0145743 [CrossRef] [PubMed]
    [Google Scholar]
  130. Booker AE, Johnston MD, Daly RA, Wrighton KC, Wilkins MJ. Draft genome sequences of multiple Frackibacter strains isolated from hydraulically fractured shale environments. Genome Announc 2017; 5: e00608 00617 [CrossRef] [PubMed]
    [Google Scholar]
  131. Everett KDE, Thao M, Horn M, Dyszynski GE, Baumann P. Novel chlamydiae in whiteflies and scale insects: endosymbionts 'Candidatus Fritschea bemisiae' strain Falk and 'Candidatus Fritschea eriococci' strain Elm. Int J Syst Evol Microbiol 2005; 55: 1581 1587 [CrossRef] [PubMed]
    [Google Scholar]
  132. Manzano-Marín A, Szabó G, Simon JC, Horn M, Latorre A. Happens in the best of subfamilies: establishment and repeated replacements of co-obligate secondary endosymbionts within Lachninae aphids. Environ Microbiol 2017; 19: 393 408 [CrossRef] [PubMed]
    [Google Scholar]
  133. Valk LC, Frank J, de la Torre-Cortés P, van 't Hof M, van Maris AJA et al. Galacturonate metabolism in anaerobic chemostat enrichment cultures: combined fermentation and acetogenesis by the dominant sp. nov. "Candidatus Galacturonibacter soehngenii". Appl Environ Microbiol 2018; 84: e01370 18 [CrossRef] [PubMed]
    [Google Scholar]
  134. Vannini C, Boscaro V, Ferrantini F, Benken KA, Mironov TI et al. Flagellar movement in two bacteria of the family Rickettsiaceae: a re-evaluation of motility in an evolutionary perspective. PLoS One 2014; 9: e87718 [CrossRef]
    [Google Scholar]
  135. Muller F, Brissac T, Le Bris N, Felbeck H, Gros O. First description of giant Archaea (Thaumarchaeota) associated with putative bacterial ectosymbionts in a sulfidic marine habitat. Environ Microbiol 2010; 12: 2371 2383 [CrossRef] [PubMed]
    [Google Scholar]
  136. Toenshoff ER, Gruber D, Horn M. Co-evolution and symbiont replacement shaped the symbiosis between adelgids (Hemiptera: Adelgidae) and their bacterial symbionts. Environ Microbiol 2012; 14: 1284 1295 [CrossRef]
    [Google Scholar]
  137. Bianciotto V, Lumini E, Bonfante P, Vandamme P. 'Candidatus Glomeribacter gigasporarum' gen. nov., sp. nov., an endosymbiont of arbuscular mycorrhizal fungi. Int J Syst Evol Microbiol 2003; 53: 121 124 [CrossRef] [PubMed]
    [Google Scholar]
  138. Boscaro V, Fokin SI, Schrallhammer M, Schweikert M, Petroni G. Revised systematics of Holospora-like bacteria and characterization of "Candidatus Gortzia infectiva", a novel macronuclear symbiont of Paramecium jenningsi . Microb Ecol 2013; 65: 255 267 [CrossRef] [PubMed]
    [Google Scholar]
  139. Zhang C, Rikihisa Y. Proposal to transfer 'Aegyptianella ranarum', an intracellular bacterium of frog red blood cells, to the family Flavobacteriaceae as 'Candidatus Hemobacterium ranarum' comb. nov. Environ Microbiol 2004; 6: 568 573 [CrossRef]
    [Google Scholar]
  140. Filker S, Kaiser M, Rosselló-Móra R, Dunthorn M, Lax G et al. "Candidatus Haloectosymbiotes riaformosensis" (Halobacteriaceae), an archaeal ectosymbiont of the hypersaline ciliate Platynematum salinarum . Syst Appl Microbiol 2014; 37: 244 251 [CrossRef] [PubMed]
    [Google Scholar]
  141. Ghai R, Pašić L, Fernández AB, Martin-Cuadrado A-B, Mizuno CM et al. New abundant microbial groups in aquatic hypersaline environments. Sci Rep 2011; 1: 135 [CrossRef] [PubMed]
    [Google Scholar]
  142. Asao M, Takaichi S, Madigan MT. Amino acid-assimilating phototrophic heliobacteria from soda lake environments: Heliorestis acidaminivorans sp. nov. and 'Candidatus Heliomonas lunata'. Extremophiles 2012; 16: 585 595 [CrossRef] [PubMed]
    [Google Scholar]
  143. Bing XL, Yang J, Zchori-Fein E, Wang XW, Liu SS. Characterization of a newly discovered symbiont of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). Appl Environ Microbiol 2013; 79: 569 575 [CrossRef] [PubMed]
    [Google Scholar]
  144. Wang Y, Stingl U, Anton-Erxleben F, Zimmer M, Brune A. Candidatus Hepatincola porcellionum’ gen. nov., sp. nov., a new, stalk-forming lineage of Rickettsiales colonizing the midgut glands of a terrestrial isopod. Arch Microbiol 2004; 181: 299 304
    [Google Scholar]
  145. Nunan LM, Pantoja CR, Gomez-Jimenez S, Lightner DV. "Candidatus Hepatobacter penaei," an intracellular pathogenic enteric bacterium in the hepatopancreas of the marine shrimp Penaeus vannamei (Crustacea: Decapoda). Appl Environ Microbiol 2013; 79: 1407 1409 [CrossRef] [PubMed]
    [Google Scholar]
  146. Wang Y, Stingl U, Anton-Erxleben F, Geisler S, Brune A et al. "Candidatus Hepatoplasma crinochetorum," a new, stalk-forming lineage of Mollicutes colonizing the midgut glands of a terrestrial isopod. Appl Environ Microbiol 2004; 70: 6166 6172 [CrossRef]
    [Google Scholar]
  147. McCutcheon JP, McDonald BR, Moran NA. Origin of an alternative genetic code in the extremely small and GC–rich genome of a bacterial symbiont. PLoS Genet 2009; 5: e1000565 [CrossRef]
    [Google Scholar]
  148. Probst AJ, Ladd B, Jarett JK, Geller-McGrath DE, Sieber CMK et al. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface. Nat Microbiol 2018; 3: 328 336 [CrossRef]
    [Google Scholar]
  149. Schwank K, Bornemann TLV, Dombrowski N, Spang A, Banfield JF et al. An archaeal symbiont-host association from the deep terrestrial subsurface. ISME J 2019; 13: 2135 2139 [CrossRef]
    [Google Scholar]
  150. Dirren S, Posch T. Promiscuous and specific bacterial symbiont acquisition in the amoeboid genus Nuclearia (Opisthokonta). FEMS Microbiol Ecol 2016; 92: fiw105 [CrossRef] [PubMed]
    [Google Scholar]
  151. Hosokawa T, Kikuchi Y, Nikoh N, Shimada M, Fukatsu T. Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLoS Biol 2006; 4: e337 [CrossRef] [PubMed]
    [Google Scholar]
  152. Salman V, Amann R, Girnth A-C, Polerecky L, Bailey JV et al. A single-cell sequencing approach to the classification of large, vacuolated sulfur bacteria. Syst Appl Microbiol 2011; 34: 243 259 [CrossRef]
    [Google Scholar]
  153. Wasmund K, Pelikan C, Watzka M, Richter A, Noel AC et al. DNA-foraging bacteria in the seafloor. bioRxiv [CrossRef]
    [Google Scholar]
  154. Skennerton CT, Haroon MF, Briegel A, Shi J, Jensen GJ et al. Phylogenomic analysis of Candidatus ‘Izimaplasma’ species: free-living representatives from a Tenericutes clade found in methane seeps. ISME J 2016; 10: 2679 2692 [CrossRef]
    [Google Scholar]
  155. Quan ZX, Rhee SK, Zuo JE, Yang Y, Bae JW et al. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environ Microbiol 2008; 10: 3130 3139 [CrossRef] [PubMed]
    [Google Scholar]
  156. Schulz F, Martijn J, Wascher F, Lagkouvardos I, Kostanjšek R et al. A Rickettsiales symbiont of amoebae with ancient features. Environ Microbiol 2016; 18: 2326 2342 [CrossRef] [PubMed]
    [Google Scholar]
  157. Kuechler SM, Gibbs G, Burckhardt D, Dettner K, Hartung V. Diversity of bacterial endosymbionts and bacteria-host co-evolution in Gondwanan relict moss bugs (Hemiptera: Coleorrhyncha: Peloridiidae). Environ Microbiol 2013; 15: 2031 2042 [CrossRef] [PubMed]
    [Google Scholar]
  158. Kantor RS, van Zyl AW, van Hille RP, Thomas BC, Harrison STL et al. Bioreactor microbial ecosystems for thiocyanate and cyanide degradation unravelled with genome-resolved metagenomics. Environ Microbiol 2015; 17: 4929 4941 [CrossRef] [PubMed]
    [Google Scholar]
  159. Moran NA, Tran P, Gerardo NM. Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes . Appl Environ Microbiol 2005; 71: 8802 8810 [CrossRef] [PubMed]
    [Google Scholar]
  160. Seah BKB, Schwaha T, Volland J-M, Huettel B, Dubilier N et al. Specificity in diversity: single origin of a widespread ciliate-bacteria symbiosis. Proc Biol Sci 2017; 284: 20170764 [CrossRef] [PubMed]
    [Google Scholar]
  161. Teixeira MMG, Borghesan TC, Ferreira RC, Santos MA, Takata CSA et al. Phylogenetic validation of the genera Angomonas and Strigomonas of trypanosomatids harboring bacterial endosymbionts with the description of new species of trypanosomatids and of proteobacterial symbionts. Protist 2011; 162: 503 524 [CrossRef]
    [Google Scholar]
  162. Küchler SM, Dettner K, Kehl S. Molecular characterization and localization of the obligate endosymbiotic bacterium in the birch catkin bug Kleidocerys resedae (Heteroptera: Lygaeidae, Ischnorhynchinae). FEMS Microbiol Ecol 2010; 73: 408 418 [CrossRef] [PubMed]
    [Google Scholar]
  163. Quinn RA, Metzler A, Tlusty M, Smolowitz RM, Leberg P et al. Lesion bacterial communities in American lobsters with diet-induced shell disease. Dis Aquat Organ 2012; 98: 221 233 [CrossRef]
    [Google Scholar]
  164. Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y et al. A korarchaeal genome reveals insights into the evolution of the archaea. Proc Natl Acad Sci USA 2008; 105: 8102 8107 [CrossRef] [PubMed]
    [Google Scholar]
  165. Michalik A, Schulz F, Michalik K, Wascher F, Horn M et al. Coexistence of novel gammaproteobacterial and Arsenophonus symbionts in the scale insect Greenisca brachypodii (Hemiptera, Coccomorpha: Eriococcidae). Environ Microbiol 2018; 20: 1148 1157 [CrossRef] [PubMed]
    [Google Scholar]
  166. Schmid M, Twachtmann U, Klein M, Strous M, Juretschko S et al. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol 2000; 23: 93 106 [CrossRef]
    [Google Scholar]
  167. Matsuura Y, Kikuchi Y, Meng XY, Koga R, Fukatsu T. Novel clade of alphaproteobacterial endosymbionts associated with stinkbugs and other arthropods. Appl Environ Microbiol 2012; 78: 4149 4156 [CrossRef] [PubMed]
    [Google Scholar]
  168. Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 2015; 521: 173 179 [CrossRef]
    [Google Scholar]
  169. Sousa FL, Neukirchen S, Allen JF, Lane N, Martin WF. Lokiarchaeon is hydrogen dependent. Nat Microbiol 2016; 1: 16034 [CrossRef] [PubMed]
    [Google Scholar]
  170. Lund MB, Mogensen MF, Marshall IPG, Albertsen M, Viana F et al. Genomic insights into the Agromyces-like symbiont of earthworms and its distribution among host species. FEMS Microbiol Ecol 2018; 94: fiy068 [CrossRef]
    [Google Scholar]
  171. Nechitaylo TY, Timmis KN, Golyshin PN. Candidatus Lumbricincola’, a novel lineage of uncultured Mollicutes from earthworms of family Lumbricidae . Environ Microbiol 2009; 11: 1016 1026 [CrossRef]
    [Google Scholar]
  172. Kölsch G, Matz-Grund C, Pedersen BV. Ultrastructural and molecular characterization of endosymbionts of the reed beetle genus Macroplea (Chrysomelidae, Donaciinae), and proposal of "Candidatus Macropleicola appendiculatae" and "Candidatus Macropleicola muticae". Can J Microbiol 2009; 55: 1250 1260 [CrossRef] [PubMed]
    [Google Scholar]
  173. Chen YR, Zhang R, Du PHM, Pan H-M, Zhang WY et al. A novel species of ellipsoidal multicellular magnetotactic prokaryotes from lake Yuehu in China. Environ Microbiol 2015; 17: 637 647 [CrossRef] [PubMed]
    [Google Scholar]
  174. Abreu F, Martins JL, Silveira TS, Keim CN, de Barros HGPL et al. 'Candidatus Magnetoglobus multicellularis', a multicellular, magnetotactic prokaryote from a hypersaline environment. Int J Syst Evol Microbiol 2007; 57: 1318 1322 [CrossRef] [PubMed]
    [Google Scholar]
  175. Lin W, Paterson GA, Zhu Q, Wang Y, Kopylova E et al. Origin of microbial biomineralization and magnetotaxis during the Archean. Proc Natl Acad Sci USA 2017; 114: 2171 2176 [CrossRef] [PubMed]
    [Google Scholar]
  176. Wenter R, Wanner G, Schüler D, Overmann J. Ultrastructure, tactic behaviour and potential for sulfate reduction of a novel multicellular magnetotactic prokaryote from North Sea sediments. Environ Microbiol 2009; 11: 1493 1505 [CrossRef]
    [Google Scholar]
  177. Lefèvre CT, Frankel RB, Abreu F, Lins U, Bazylinski DA. Culture-independent characterization of a novel, uncultivated magnetotactic member of the Nitrospirae phylum. Environ Microbiol 2011; 13: 538 549 [CrossRef] [PubMed]
    [Google Scholar]
  178. Snaidr J, Fuchs B, Wallner G, Wagner M, Schleifer KH et al. Phylogeny and in situ identification of a morphologically conspicuous bacterium, Candidatus Magnospira bakii, present at very low frequency in activated sludge. Environ Microbiol 1999; 1: 125 135 [CrossRef]
    [Google Scholar]
  179. Golyshina OV, Toshchakov SV, Makarova KS, Gavrilov SN, Korzhenkov AA et al. ‘ARMAN’ archaea depend on association with euryarchaeal host in culture and in situ . Nat Commun 2017; 8: 60 [CrossRef]
    [Google Scholar]
  180. Matsuyama T, Yasuike M, Fujiwara A, Nakamura Y, Takano T et al. A spirochaete is suggested as the causative agent of Akoya oyster disease by metagenomic analysis. PLoS One 2017; 12: e0182280 [CrossRef] [PubMed]
    [Google Scholar]
  181. Pérez-Cataluña A, Salas-Massó N, Diéguez AL, Balboa S, Lema A et al. Revisiting the taxonomy of the genus Arcobacter: getting order from the chaos. Front Microbiol 2018; 9 : 2077 [CrossRef]
    [Google Scholar]
  182. Viver T, Orellana LH, Hatt JK, Urdiain M, Díaz S et al. The low diverse gastric microbiome of the jellyfish Cotylorhiza tuberculata is dominated by four novel taxa. Environ Microbiol 2017; 19: 3039 3058 [CrossRef]
    [Google Scholar]
  183. Schrallhammer M, Ferrantini F, Vannini C, Galati S, Schweikert M et al. 'Candidatus Megaira polyxenophila' gen. nov., sp. nov.: considerations on evolutionary history, host range and shift of early divergent rickettsiae. PLoS One 2013; 8: e72581 [CrossRef] [PubMed]
    [Google Scholar]
  184. Corsaro D, Müller KD, Wingender J, Michel R. "Candidatus Mesochlamydia elodeae" (Chlamydiae: Parachlamydiaceae), a novel chlamydia parasite of free-living amoebae. Parasitol Res 2013; 112: 829 838 [CrossRef] [PubMed]
    [Google Scholar]
  185. Iino T, Tamaki H, Tamazawa S, Ueno Y, Ohkuma M et al. Candidatus Methanogranum caenicola: a novel methanogen from the anaerobic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a methanogenic lineage of the class Thermoplasmata . Microbes Environ 2013; 28: 244 250 [CrossRef] [PubMed]
    [Google Scholar]
  186. Sorokin DY, Makarova KS, Abbas B, Ferrer M, Golyshin PN et al. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat Microbiol 2017; 2: 17081 [CrossRef] [PubMed]
    [Google Scholar]
  187. Sorokin DY, Merkel AY, Abbas B, Makarova KS, Rijpstra WIC et al. Methanonatronarchaeum thermophilum gen. nov., sp. nov. and 'Candidatus Methanohalarchaeum thermophilum', extremely halo(natrono)philic methyl-reducing methanogens from hypersaline lakes comprising a new euryarchaeal class Methanonatronarchaeia classis nov. Int J Syst Evol Microbiol 2018; 68: 2199 2208 [CrossRef] [PubMed]
    [Google Scholar]
  188. Borrel G, Harris HMB, Tottey W, Mihajlovski A, Parisot N et al. Genome sequence of "Candidatus Methanomethylophilus alvus" Mx1201, a methanogenic archaeon from the human gut belonging to a seventh order of methanogens. J Bacteriol 2012; 194: 6944 6945 [CrossRef] [PubMed]
    [Google Scholar]
  189. Lang K, Schuldes J, Klingl A, Poehlein A, Daniel R et al. New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of “Candidatus Methanoplasma termitum”. Appl Environ Microbiol 2015; 81: 1338 1352 [CrossRef] [PubMed]
    [Google Scholar]
  190. Hou S, Makarova KS, Saw JHW, Senin P, Ly BV et al. Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia . Biol Direct 2008; 3: 26 [CrossRef] [PubMed]
    [Google Scholar]
  191. Pratscher J, Vollmers J, Wiegand S, Dumont MG, Kaster AK. Unravelling the identity, metabolic potential and global biogeography of the atmospheric methane-oxidizing upland soil cluster α. Environ Microbiol 2018; 20: 1016 1029 [CrossRef] [PubMed]
    [Google Scholar]
  192. Pandit PS, Hoppert M, Rahalkar MC. Description of 'Candidatus Methylocucumis oryzae', a novel Type I methanotroph with large cells and pale pink colour, isolated from an Indian rice field. Antonie van Leeuwenhoek 2018; 111: 2473 2484 [CrossRef] [PubMed]
    [Google Scholar]
  193. Pandit PS, Rahalkar MC. Renaming of ‘Candidatus Methylocucumis oryzae’ as Methylocucumis oryzae gen. nov., sp. nov., a novel Type I methanotroph isolated from India. Antonie van Leeuwenhoek 2019; 111: 2473 2484
    [Google Scholar]
  194. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 2010; 464: 543 548 [CrossRef] [PubMed]
    [Google Scholar]
  195. Salcher MM, Neuenschwander SM, Posch T, Pernthaler J. The ecology of pelagic freshwater methylotrophs assessed by a high-resolution monitoring and isolation campaign. ISME J 2015; 9: 2442 2453 [CrossRef] [PubMed]
    [Google Scholar]
  196. Danilova OV, Suzina NE, Van De Kamp J, Svenning MM, Bodrossy L et al. A new cell morphotype among methane oxidizers: a spiral-shaped obligately microaerophilic methanotroph from northern low-oxygen environments. ISME J 2016; 10: 2734 2743 [CrossRef] [PubMed]
    [Google Scholar]
  197. Rissanen AJ, Saarenheimo J, Tiirola M, Peura S, Aalto SL et al. Gammaproteobacterial methanotrophs dominate methanotrophy in aerobic and anaerobic layers of boreal lake waters. Aquat Microb Ecol 2018; 81: 257 276 [CrossRef]
    [Google Scholar]
  198. Baker BJ, Comolli LR, Dick GJ, Hauser LJ, Hyatt D et al. Enigmatic, ultrasmall, uncultivated Archaea . Proc Natl Acad Sci USA 2010; 107: 8806 8811 [CrossRef] [PubMed]
    [Google Scholar]
  199. Jimenez-Infante F, Ngugi DK, Alam I, Rashid M, Baalawi W et al. Genomic differentiation among two strains of the PS1 clade isolated from geographically separated marine habitats. FEMS Microbiol Ecol 2014; 89: 181 197 [CrossRef] [PubMed]
    [Google Scholar]
  200. Sassera D, Beninati T, Bandi C, Bouman EAP, Sacchi L et al. 'Candidatus Midichloria mitochondrii', an endosymbiont of the tick Ixodes ricinus with a unique intramitochondrial lifestyle. Int J Syst Evol Microbiol 2006; 56: 2535 2540 [CrossRef]
    [Google Scholar]
  201. Vosseberg J, Martijn J, Ettema TJG. Draft genome sequence of "Candidatus Moanabacter tarae," representing a novel marine verrucomicrobial lineage. Microbiol Resour Announc 2018; 7: e00951 18 [CrossRef] [PubMed]
    [Google Scholar]
  202. Naito M, Desirò A, González JB, Tao G, Morton JB et al. 'Candidatus Moeniiplasma glomeromycotorum', an endobacterium of arbuscular mycorrhizal fungi. Int J Syst Evol Microbiol 2017; 67: 1177 1184 [CrossRef] [PubMed]
    [Google Scholar]
  203. McCutcheon JP, von Dohlen CD. An interdependent metabolic patchwork in the nested symbiosis of mealybugs. Curr Biol 2011; 21: 1366 1372 [CrossRef] [PubMed]
    [Google Scholar]
  204. Barnum TP, Figueroa IA, Carlström CI, Lucas LN, Engelbrektson AL et al. Genome-resolved metagenomics identifies genetic mobility, metabolic interactions, and unexpected diversity in perchlorate-reducing communities. ISME J 2018; 12: 1568 1581 [CrossRef] [PubMed]
    [Google Scholar]
  205. Castelle CJ, Wrighton KC, Thomas BC, Hug LA, Brown CT et al. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr Biol 2015; 25: 690 701 [CrossRef] [PubMed]
    [Google Scholar]
  206. Crits-Christoph A, Gelsinger DR, Ma B, Wierzchos J, Ravel J et al. Functional interactions of archaea, bacteria and viruses in a hypersaline endolithic community. Environ Microbiol 2016; 18: 2064 2077 [CrossRef]
    [Google Scholar]
  207. Wurch L, Giannone RJ, Belisle BS, Swift C, Utturkar S et al. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment. Nat Commun 2016; 7: 12115 [CrossRef] [PubMed]
    [Google Scholar]
  208. Narasingarao P, Podell S, Ugalde JA, Brochier-Armanet C, Emerson JB et al. De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J 2012; 6: 81 93 [CrossRef] [PubMed]
    [Google Scholar]
  209. Lefèvre C, Charles H, Vallier A, Delobel B, Farrell B et al. Endosymbiont phylogenesis in the dryophthoridae weevils: evidence for bacterial replacement. Mol Biol Evol 2004; 21: 965 973 [CrossRef] [PubMed]
    [Google Scholar]
  210. Noda H, Watanabe K, Kawai S, Yukuhiro F, Miyoshi T et al. Bacteriome-associated endosymbionts of the green rice leafhopper Nephotettix cincticeps (Hemiptera: Cicadellidae). Appl Entomol Zool 2012; 47: 217 225 [CrossRef]
    [Google Scholar]
  211. Schuster L, Bright M. A novel colonial ciliate Zoothamnium ignavum sp. nov. (Ciliophora, Oligohymenophorea) and its ectosymbiont Candidatus Navis piranensis gen. nov., sp. nov. from shallow-water wood falls. PLoS One 2016; 11: e0162834 [CrossRef]
    [Google Scholar]
  212. Boscaro V, Vannini C, Fokin SI, Verni F, Petroni G. Characterization of "Candidatus Nebulobacter yamunensis" from the cytoplasm of Euplotes aediculatus (Ciliophora, Spirotrichea) and emended description of the family Francisellaceae . Syst Appl Microbiol 2012; 35: 432 440 [CrossRef] [PubMed]
    [Google Scholar]
  213. Snel J, Heinen PP, Blok HJ, Carman RJ, Duncan AJ et al. Comparison of 16S rRNA sequences of segmented filamentous bacteria isolated from mice, rats, and chickens and proposal of "Candidatus Arthromitus". Int J Syst Bacteriol 1995; 45: 780 782 [CrossRef] [PubMed]
    [Google Scholar]
  214. Kawahara M, Rikihisa Y, Isogai E, Takahashi M, Misumi H et al. Ultrastructure and phylogenetic analysis of 'Candidatus Neoehrlichia mikurensis' in the family Anaplasmataceae, isolated from wild rats and found in Ixodes ovatus ticks. Int J Syst Evol Microbiol 2004; 54: 1837 1843 [CrossRef] [PubMed]
    [Google Scholar]
  215. Blackall LL, Stratton H, Bradford D, Dot TD, Sjörup C et al. "Candidatus Microthrix parvicella", a filamentous bacterium from activated sludge sewage treatment plants. Int J Syst Bacteriol 1996; 46: 344 346 [CrossRef] [PubMed]
    [Google Scholar]
  216. Møller P, Lund MB, Schramm A. Evolution of the tripartite symbiosis between earthworms, Verminephrobacter and Flexibacter-like bacteria. Front Microbiol 2015; 6: 529 [CrossRef] [PubMed]
    [Google Scholar]
  217. Pizzetti I, Schulz F, Tyml T, Fuchs BM, Amann R et al. Chlamydial seasonal dynamics and isolation of 'Candidatus Neptunochlamydia vexilliferae' from a Tyrrhenian coastal lake. Environ Microbiol 2016; 18: 2405 2417 [CrossRef] [PubMed]
    [Google Scholar]
  218. Ngugi DK, Blom J, Stepanauskas R, Stingl U. Diversification and niche adaptations of Nitrospina-like bacteria in the polyextreme interfaces of Red Sea brines. ISME J 2016; 10: 1383 1399 [CrossRef] [PubMed]
    [Google Scholar]
  219. Jung MY, Kim JG, Sinninghe Damsté JS, Rijpstra WIC, Madsen EL et al. A hydrophobic ammonia-oxidizing archaeon of the Nitrosocosmicus clade isolated from coal tar-contaminated sediment. Environ Microbiol Rep 2016; 8: 983 992 [CrossRef] [PubMed]
    [Google Scholar]
  220. Lehtovirta-Morley LE, Ross J, Hink L, Weber EB, Gubry-Rangin C et al. Isolation of 'Candidatus Nitrosocosmicus franklandus', a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiol Ecol 2016; 92: fiw057 [CrossRef] [PubMed]
    [Google Scholar]
  221. Hayatsu M, Tago K, Uchiyama I, Toyoda A, Wang Y et al. An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil. ISME J 2017; 11: 1130 1141 [CrossRef] [PubMed]
    [Google Scholar]
  222. Ahlgren NA, Chen Y, Needham DM, Parada AE, Sachdeva R et al. Genome and epigenome of a novel marine Thaumarchaeota strain suggest viral infection, phosphorothioation DNA modification and multiple restriction systems. Environ Microbiol 2017; 19: 2434 2452 [CrossRef] [PubMed]
    [Google Scholar]
  223. Santoro AE, Dupont CL, Richter RA, Craig MT, Carini P et al. Genomic and proteomic characterization of "Candidatus Nitrosopelagicus brevis": an ammonia-oxidizing archaeon from the open ocean. Proc Natl Acad Sci USA 2015; 112: 1173 8 [CrossRef]
    [Google Scholar]
  224. Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI, Nicol GW. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc Natl Acad Sci USA 2011; 108: 15892 15897 [CrossRef] [PubMed]
    [Google Scholar]
  225. Lebedeva EV, Hatzenpichler R, Pelletier E, Schuster N, Hauzmayer S et al. Enrichment and genome sequence of the group I.1a ammonia-oxidizing archaeon "Ca. Nitrosotenuis uzonensis" representing a clade globally distributed in thermal habitats. PLoS One 2013; 8: e80835 [CrossRef] [PubMed]
    [Google Scholar]
  226. Alawi M, Lipski A, Sanders T, Pfeiffer EM, Spieck E. Cultivation of a novel cold-adapted nitrite oxidizing betaproteobacterium from the Siberian Arctic. ISME J 2007; 1: 256 264 [CrossRef] [PubMed]
    [Google Scholar]
  227. Blackall LL, Seviour EM, Bradford D, Rossetti S, Tandoi V et al. 'Candidatus Nostocoida limicola', a filamentous bacterium from activated sludge. Int J Syst Evol Microbiol 2000; 50: 703 709 [CrossRef] [PubMed]
    [Google Scholar]
  228. Sato T, Kuwahara H, Fujita K, Noda S, Kihara K et al. Intranuclear verrucomicrobial symbionts and evidence of lateral gene transfer to the host protist in the termite gut. ISME J 2014; 8: 1008 1019 [CrossRef] [PubMed]
    [Google Scholar]
  229. Schulz F, Lagkouvardos I, Wascher F, Aistleitner K, Kostanjšek R et al. Life in an unusual intracellular niche: a bacterial symbiont infecting the nucleus of amoebae. ISME J 2014; 8: 1634 1644 [CrossRef] [PubMed]
    [Google Scholar]
  230. Schulz F, Tyml T, Pizzetti I, Dyková I, Fazi S et al. Marine amoebae with cytoplasmic and perinuclear symbionts deeply branching in the Gammaproteobacteria . Sci Rep 2015; 5: 13381 [CrossRef]
    [Google Scholar]
  231. Birtles RJ, Rowbotham TJ, Michel R, Pitcher DG, Lascola B et al. 'Candidatus Odyssella thessalonicensis' gen. nov., sp. nov., an obligate intracellular parasite of Acanthamoeba species. Int J Syst Evol Microbiol 2000; 50: 63 72 [CrossRef] [PubMed]
    [Google Scholar]
  232. Fenchel T, Thar R. "Candidatus Ovobacter propellens": a large conspicuous prokaryote with an unusual motility behaviour. FEMS Microbiol Ecol 2004; 48: 231 238 [CrossRef] [PubMed]
    [Google Scholar]
  233. Noel GR, Atibalentja N. 'Candidatus Paenicardinium endonii', an endosymbiont of the plant-parasitic nematode Heterodera glycines (Nemata: Tylenchida), affiliated to the phylum Bacteroidetes . Int J Syst Evol Microbiol 2006; 56: 1697 1702 [CrossRef] [PubMed]
    [Google Scholar]
  234. Moran NA, Dale C, Dunbar H, Smith WA, Ochman H. Intracellular symbionts of sharpshooters (Insecta: Hemiptera: Cicadellinae) form a distinct clade with a small genome. Environ Microbiol 2003; 5: 116 126 [CrossRef] [PubMed]
    [Google Scholar]
  235. Horn M, Fritsche TR, Gautom RK, Schleifer KH, Wagner M. Novel bacterial endosymbionts of Acanthamoeba spp. related to the Paramecium caudatum symbiont Caedibacter caryophilus . Environ Microbiol 1999; 1: 357 367 [CrossRef] [PubMed]
    [Google Scholar]
  236. Eschbach E, Pfannkuchen M, Schweikert M, Drutschmann D, Brümmer F et al. "Candidatus Paraholospora nucleivisitans", an intracellular bacterium in Paramecium sexaurelia shuttles between the cytoplasm and the nucleus of its host. Syst Appl Microbiol 2009; 32: 490 500 [CrossRef] [PubMed]
    [Google Scholar]
  237. Naas AE, Solden LM, Norbeck AD, Brewer H, Hagen LH et al. Candidatus Paraporphyromonas polyenzymogenes” encodes multi-modular cellulases linked to the type IX secretion system. Microbiome 2018; 6: 44 [CrossRef]
    [Google Scholar]
  238. Hosokawa T, Kikuchi Y, Nikoh N, Meng X-Y, Hironaka M et al. Phylogenetic position and peculiar genetic traits of a midgut bacterial symbiont of the stinkbug Parastrachia japonensis . Appl Environ Microbiol 2010; 76: 4130 4135 [CrossRef] [PubMed]
    [Google Scholar]
  239. Castelle CJ, Brown CT, Thomas BC, Williams KH, Banfield JF. Unusual respiratory capacity and nitrogen metabolism in a Parcubacterium (OD1) of the candidate phyla radiation. Sci Rep 2017; 7: 40101 [CrossRef] [PubMed]
    [Google Scholar]
  240. Rappé MS, Connon SA, Vergin KL, Giovannoni SJ. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 2002; 418: 630 633 [CrossRef]
    [Google Scholar]
  241. Zreik L, Bové JM, Garnier M. Phylogenetic characterization of the bacterium-like organism associated with marginal chlorosis of strawberry and proposition of a Candidatus taxon for the organism, 'Candidatus Phlomobacter fragariae'. Int J Syst Bacteriol 1998; 48: 257 261 [CrossRef]
    [Google Scholar]
  242. Figueroa IA, Barnum TP, Somasekhar PY, Carlström CI, Engelbrektson AL et al. Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway. Proc Natl Acad Sci USA 2018; 115: E92 E101 [CrossRef] [PubMed]
    [Google Scholar]
  243. Hendry TA, Dunlap PV. The uncultured luminous symbiont of Anomalops katoptron (Beryciformes: Anomalopidae) represents a new bacterial genus. Mol Phylogenet Evol 2011; 61: 834 843 [CrossRef] [PubMed]
    [Google Scholar]
  244. Yurchenko T, Ševčiková T, Přibyl P, El Karkouri K, Klimeš V et al. A gene transfer event suggests a long-term partnership between eustigmatophyte algae and a novel lineage of endosymbiotic bacteria. ISME J 2018; 12: 2163 2175 [CrossRef]
    [Google Scholar]
  245. Tanabe Y, Okazaki Y, Yoshida M, Matsuura H, Kai A et al. A novel alphaproteobacterial ectosymbiont promotes the growth of the hydrocarbon-rich green alga Botryococcus braunii . Sci Rep 2015; 5: 10467 [CrossRef]
    [Google Scholar]
  246. IRPCM Phytoplasma/Spiroplasma Working Team--Phytoplasma Taxonomy Group 'Candidatus Phytoplasma', a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 2004; 54: 1243 1255 [CrossRef] [PubMed]
    [Google Scholar]
  247. Draghi A, Popov VL, Kahl MM, Stanton JB, Brown CC et al. Characterization of "Candidatus piscichlamydia salmonis" (order Chlamydiales), a chlamydia-like bacterium associated with epitheliocystis in farmed Atlantic salmon (Salmo salar). J Clin Microbiol 2004; 42: 5286 5297 [CrossRef] [PubMed]
    [Google Scholar]
  248. Giebel H-A, Kalhoefer D, Lemke A, Thole S, Gahl-Janssen R et al. Distribution of Roseobacter RCA and SAR11 lineages in the North Sea and characteristics of an abundant RCA isolate. ISME J 2011; 5: 8 19 [CrossRef]
    [Google Scholar]
  249. Giebel H-A, Kalhoefer D, Gahl-Janssen R, Choo YJ, Lee K et al. Planktomarina temperata gen. nov., sp. nov., belonging to the globally distributed RCA cluster of the marine Roseobacter clade, isolated from the German Wadden Sea. Int J Syst Evol Microbiol 2013; 63: 4207 4217 [CrossRef]
    [Google Scholar]
  250. Jezbera J, Sharma AK, Brandt U, Doolittle WF, Hahn MW. 'Candidatus Planktophila limnetica', an actinobacterium representing one of the most numerically important taxa in freshwater bacterioplankton. Int J Syst Evol Microbiol 2009; 59: 2864 2869 [CrossRef] [PubMed]
    [Google Scholar]
  251. Lavy A, Keren R, Yu K, Thomas BC, Alvarez-Cohen L et al. A novel Chromatiales bacterium is a potential sulfide oxidizer in multiple orders of marine sponges. Environ Microbiol 2018; 20: 800 814 [CrossRef] [PubMed]
    [Google Scholar]
  252. Thao ML, Baumann P. Evolutionary relationships of primary prokaryotic endosymbionts of whiteflies and their hosts. Appl Environ Microbiol 2004; 70: 3401 3406 [CrossRef]
    [Google Scholar]
  253. Horn M, Fritsche TR, Linner T, Gautom RK, Harzenetter MD et al. Obligate bacterial endosymbionts of Acanthamoeba spp. related to the β-Proteobacteria: proposal of 'Candidatus Procabacter acanthamoebae' gen. nov., sp. nov. Int J Syst Evol Microbiol 2002; 52: 599 605 [CrossRef] [PubMed]
    [Google Scholar]
  254. Nakabachi A, Ueoka R, Oshima K, Teta R, Mangoni A et al. Defensive bacteriome symbiont with a drastically reduced genome. Curr Biol 2013; 23: 1478 1484 [CrossRef] [PubMed]
    [Google Scholar]
  255. McIlroy SJ, Karst SM, Nierychlo M, Dueholm MS, Albertsen M et al. Genomic and in situ investigations of the novel uncultured Chloroflexi associated with 0092 morphotype filamentous bulking in activated sludge. ISME J 2016; 10: 2223 2234 [CrossRef] [PubMed]
    [Google Scholar]
  256. Vannini C, Ferrantini F, Verni F, Petroni G. A new obligate bacterial symbiont colonizing the ciliate Euplotes in brackish and freshwater: ‘Candidatus Protistobacter heckmanni’. Aquat Microb Ecol 2013; 70: 233 243 [CrossRef]
    [Google Scholar]
  257. Fukatsu T, Hosokawa T, Koga R, Nikoh N, Kato T et al. Intestinal endocellular symbiotic bacterium of the macaque louse Pedicinus obtusus: distinct endosymbiont origins in anthropoid primate lice and the old world monkey louse. Appl Environ Microbiol 2009; 75: 3796 3799 [CrossRef] [PubMed]
    [Google Scholar]
  258. Bressan A, Arneodo J, Simonato M, Haines WP, Boudon-Padieu E. Characterization and evolution of two bacteriome-inhabiting symbionts in cixiid planthoppers (Hemiptera: Fulgoromorpha: Pentastirini). Environ Microbiol 2009; 11: 3265 3279 [CrossRef] [PubMed]
    [Google Scholar]
  259. Moran NA, Russell JA, Koga R, Fukatsu T. Evolutionary relationships of three new species of Enterobacteriaceae living as symbionts of aphids and other insects. Appl Environ Microbiol 2005; 71: 3302 3310 [CrossRef] [PubMed]
    [Google Scholar]
  260. Corsaro D, Work TM. Candidatus Renichlamydia lutjani, a Gram-negative bacterium in internal organs of blue-striped snapper Lutjanus kasmira from Hawaii. Dis Aquat Organ 2012; 98: 249 254 [CrossRef] [PubMed]
    [Google Scholar]
  261. Gruber-Vodicka HR, Dirks U, Leisch N, Baranyi C, Stoecker K et al. Paracatenula, an ancient symbiosis between thiotrophic Alphaproteobacteria and catenulid flatworms. Proc Natl Acad Sci USA 2011; 108: 12078 12083 [CrossRef] [PubMed]
    [Google Scholar]
  262. Sasaki-Fukatsu K, Koga R, Nikoh N, Yoshizawa K, Kasai S et al. Symbiotic bacteria associated with stomach discs of human lice. Appl Environ Microbiol 2006; 72: 7349 7352 [CrossRef]
    [Google Scholar]
  263. Kikuchi Y, Hosokawa T, Nikoh N, Meng X-Y, Kamagata Y et al. Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs. BMC Biol 2009; 7: 2 [CrossRef] [PubMed]
    [Google Scholar]
  264. Newton ILG, Woyke T, Auchtung TA, Dilly GF, Dutton RJ et al. The Calyptogena magnifica chemoautotrophic symbiont genome. Science 2007; 315: 998 1000 [CrossRef]
    [Google Scholar]
  265. Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 2013; 31: 533 538 [CrossRef]
    [Google Scholar]
  266. Woebken D, Lam P, Kuypers MMM, Naqvi SWA, Kartal B et al. A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones. Environ Microbiol 2008; 11: 3106 3119
    [Google Scholar]
  267. Martinson VG, Magoc T, Koch H, Salzberg SL, Moran NA. Genomic features of a bumble bee symbiont reflect its host environment. Appl Environ Microbiol 2014; 80: 3793 3803 [CrossRef] [PubMed]
    [Google Scholar]
  268. Matsuura Y, Kikuchi Y, Hosokawa T, Koga R, Meng XY et al. Evolution of symbiotic organs and endosymbionts in lygaeid stinkbugs. ISME J 2012; 6: 397 409 [CrossRef] [PubMed]
    [Google Scholar]
  269. Stride MC, Polkinghorne A, Miller TL, Nowak BF. Molecular characterization of "Candidatus Similichlamydia latridicola" gen. nov., sp. nov. (Chlamydiales: "Candidatus Parilichlamydiaceae"), a novel Chlamydia-like epitheliocystis agent in the striped trumpeter, Latris lineata (Forster). Appl Environ Microbiol 2013; 79: 4914 4920 [CrossRef] [PubMed]
    [Google Scholar]
  270. Gong J, Qing Y, Guo X, Warren A. Candidatus Sonnebornia yantaiensis”, a member of candidate division OD1, as intracellular bacteria of the ciliated protist Paramecium bursaria (Ciliophora, Oligohymenophorea). Syst Appl Microbiol 2014; 37: 35 41 [CrossRef]
    [Google Scholar]
  271. Gruwell ME, Hardy NB, Gullan PJ, Dittmar K. Evolutionary relationships among primary endosymbionts of the mealybug subfamily Phenacoccinae (Hemiptera: Coccoidea: Pseudococcidae). Appl Environ Microbiol 2010; 76: 7521 7525 [CrossRef] [PubMed]
    [Google Scholar]
  272. Bresciani L, Lemos LN, Wale N, Lin JY, Strauss AT et al. Draft genome sequence of "Candidatus Spirobacillus cienkowskii," a pathogen of freshwater Daphnia species, reconstructed from hemolymph metagenomic reads. Microbiol Resour Announc 2018; 7: e01175 18 [CrossRef] [PubMed]
    [Google Scholar]
  273. Mazzon L, Piscedda A, Simonato M, Martinez-Sañudo I, Squartini A et al. Presence of specific symbiotic bacteria in flies of the subfamily Tephritinae (Diptera Tephritidae) and their phylogenetic relationships: proposal of 'Candidatus Stammerula tephritidis'. Int J Syst Evol Microbiol 2008; 58: 1277 1287 [CrossRef] [PubMed]
    [Google Scholar]
  274. Zecchin S, Mueller RC, Seifert J, Stingl U, Anantharaman K et al. Rice paddy Nitrospirae encode and express genes related to sulfate respiration: proposal of the new genus Candidatus Sulfobium. Appl Environ Microbiol 2018; 84: e02224 17
    [Google Scholar]
  275. Hausmann B, Pelikan C, Herbold CW, Köstlbacher S, Albertsen M et al. Peatland Acidobacteria with a dissimilatory sulfur metabolism. ISME J 2018; 12: 1729 1742 [CrossRef] [PubMed]
    [Google Scholar]
  276. Liu Z, Müller J, Li T, Alvey RM, Vogl K et al. Genomic analysis reveals key aspects of prokaryotic symbiosis in the phototrophic consortium "Chlorochromatium aggregatum". Genome Biol 2013; 14: R127 [CrossRef] [PubMed]
    [Google Scholar]
  277. Hongoh Y, Sato T, Noda S, Ui S, Kudo T et al. Candidatus Symbiothrix dinenymphae: bristle-like Bacteroidales ectosymbionts of termite gut protists. Environ Microbiol 2007; 9: 2631 2635 [CrossRef] [PubMed]
    [Google Scholar]
  278. Fehr A, Walther E, Schmidt-Posthaus H, Nufer L, Wilson A et al. Candidatus Syngnamydia venezia, a novel member of the phylum Chlamydiae from the broad nosed pipefish, Syngnathus typhle . PLoS One 2013; 8: e70853 [CrossRef] [PubMed]
    [Google Scholar]
  279. Laso-Pérez R, Wegener G, Knittel K, Widdel F, Harding KJ et al. Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 2016; 539: 396 401 [CrossRef] [PubMed]
    [Google Scholar]
  280. Sorokin DY, Abbas B, Geleijnse M, Kolganova TV, Kleerebezem R et al. Syntrophic associations from hypersaline soda lakes converting organic acids and alcohols to methane at extremely haloalkaline conditions. Environ Microbiol 2016; 18: 3189 3202 [CrossRef]
    [Google Scholar]
  281. Sorokin DY, Abbas B, Tourova TP, Bumazhkin BK, Kolganova TV et al. Sulfate-dependent acetate oxidation under extremely natron-alkaline conditions by syntrophic associations from hypersaline soda lakes. Microbiology 2014; 160: 723 732 [CrossRef]
    [Google Scholar]
  282. Kaiwa N, Hosokawa T, Nikoh N, Tanahashi M, Moriyama M et al. Symbiont-supplemented maternal investment underpinning host's ecological adaptation. Curr Biol 2014; 24: 2465 2470 [CrossRef] [PubMed]
    [Google Scholar]
  283. Hongoh Y, Sato T, Dolan MF, Noda S, Ui S et al. The motility symbiont of the termite gut flagellate Caduceia versatilis is a member of the "Synergistes" group. Appl Environ Microbiol 2007; 73: 6270 6276 [CrossRef] [PubMed]
    [Google Scholar]
  284. Eddie BJ, Wang Z, Malanoski AP, Hall RJ, Oh SD et al. 'Candidatus Tenderia electrophaga', an uncultivated electroautotroph from a biocathode enrichment. Int J Syst Evol Microbiol 2016; 66: 2178 2185 [CrossRef] [PubMed]
    [Google Scholar]
  285. Rinke C, Rubino F, Messer LF, Youssef N, Parks DH et al. A phylogenomic and ecological analysis of the globally abundant marine group II archaea (Ca. Poseidoniales ord. nov.). ISME J 2019; 13: 663 675 [CrossRef]
    [Google Scholar]
  286. Martin-Cuadrado A-B, Garcia-Heredia I, Moltó AG, López-Úbeda R, Kimes N et al. A new class of marine Euryarchaeota group II from the Mediterranean deep chlorophyll maximum. ISME J 2015; 9: 1619 1634 [CrossRef] [PubMed]
    [Google Scholar]
  287. Liu Z, Klatt CG, Ludwig M, Rusch DB, Jensen SI et al. 'Candidatus Thermochlorobacter aerophilum:' an aerobic chlorophotoheterotrophic member of the phylum Chlorobi defined by metagenomics and metatranscriptomics. ISME J 2012; 6: 1869 1882 [CrossRef] [PubMed]
    [Google Scholar]
  288. Lefèvre CT, Abreu F, Schmidt ML, Lins U, Frankel RB et al. Moderately thermophilic magnetotactic bacteria from hot springs in Nevada. Appl Environ Microbiol 2010; 76: 3740 3743 [CrossRef] [PubMed]
    [Google Scholar]
  289. Rinke C, Schmitz-Esser S, Stoecker K, Nussbaumer AD, Molnár DA et al. "Candidatus Thiobios zoothamnicoli," an ectosymbiotic bacterium covering the giant marine ciliate Zoothamnium niveum . Appl Environ Microbiol 2006; 72: 2014 2021 [CrossRef]
    [Google Scholar]
  290. König S, Gros O, Heiden SE, Hinzke T, Thürmer A et al. Nitrogen fixation in a chemoautotrophic lucinid symbiosis. Nat Microbiol 2016; 2: 16193 [CrossRef] [PubMed]
    [Google Scholar]
  291. Marshall KT, Morris RM. Isolation of an aerobic sulfur oxidizer from the SUP05/Arctic96BD-19 clade. ISME J 2013; 7: 452 455 [CrossRef] [PubMed]
    [Google Scholar]
  292. Danovaro R, Canals M, Tangherlini M, Dell’Anno A, Gambi C et al. A submarine volcanic eruption leads to a novel microbial habitat. Nat Ecol Evol 2017; 1: 0144 [CrossRef]
    [Google Scholar]
  293. Zimmermann J, Wentrup C, Sadowski M, Blazejak A, Gruber-Vodicka HR et al. Closely coupled evolutionary history of ecto- and endosymbionts from two distantly related animal phyla. Mol Ecol 2016; 25: 3203 3223 [CrossRef] [PubMed]
    [Google Scholar]
  294. Muyzer G, Yildirim E, van Dongen U, Kühl M, Thar R. Identification of "Candidatus Thioturbo danicus," a microaerophilic bacterium that builds conspicuous veils on sulfidic sediments. Appl Environ Microbiol 2005; 71: 8929 8933 [CrossRef]
    [Google Scholar]
  295. Szabó G, Schulz F, Toenshoff ER, Volland J-M, Finkel OM et al. Convergent patterns in the evolution of mealybug symbioses involving different intrabacterial symbionts. ISME J 2017; 11: 715 726 [CrossRef]
    [Google Scholar]
  296. Thao ML, Gullan PJ, Baumann P, Secondary BP. Secondary (γ-proteobacteria) endosymbionts infect the primary (β-Proteobacteria) endosymbionts of mealybugs multiple times and coevolve with their hosts. Appl Environ Microbiol 2002; 68: 3190 3197 [CrossRef] [PubMed]
    [Google Scholar]
  297. Kostanjšek R, Pašić L, Daims H, Sket B. Structure and community composition of sprout-like bacterial aggregates in a dinaric karst subterranean stream. Microb Ecol 2013; 66: 5 18 [CrossRef] [PubMed]
    [Google Scholar]
  298. Kuechler SM, Dettner K, Kehl S. Characterization of an obligate intracellular bacterium in the midgut epithelium of the bulrush bug Chilacis typhae (Heteroptera, Lygaeidae, Artheneinae). Appl Environ Microbiol 2011; 77: 2869 2876 [CrossRef] [PubMed]
    [Google Scholar]
  299. Brewer TE, Handley KM, Carini P, Gilbert JA, Fierer N. Genome reduction in an abundant and ubiquitous soil bacterium 'Candidatus Udaeobacter copiosus'. Nat Microbiol 2016; 2: 16198 [CrossRef] [PubMed]
    [Google Scholar]
  300. Gruwell ME, Morse GE, Normark BB. Phylogenetic congruence of armored scale insects (Hemiptera: Diaspididae) and their primary endosymbionts from the phylum Bacteroidetes . Mol Phylogenet Evol 2007; 44: 267 280 [CrossRef] [PubMed]
    [Google Scholar]
  301. Fonseca A, Ishoey T, Espinoza C, Pérez-Pantoja D, Manghisi A et al. Genomic features of "Candidatus Venteria ishoeyi", a new sulfur-oxidizing macrobacterium from the Humboldt Sulfuretum off Chile. PLoS One 2017; 12: e0188371 [CrossRef] [PubMed]
    [Google Scholar]
  302. Kuwahara H, Yoshida T, Takaki Y, Shimamura S, Nishi S et al. Reduced genome of the thioautotrophic intracellular symbiont in a deep-sea clam, Calyptogena okutanii . Curr Biol 2007; 17: 881 886 [CrossRef] [PubMed]
    [Google Scholar]
  303. Stingl U, Maass A, Radek R, Brune A. Symbionts of the gut flagellate Staurojoenina sp. from Neotermes cubanus represent a novel, termite-associated lineage of Bacteroidales: description of 'Candidatus Vestibaculum illigatum'. Microbiology 2004; 150: 2229 2235 [CrossRef] [PubMed]
    [Google Scholar]
  304. Gonella E, Negri I, Marzorati M, Mandrioli M, Sacchi L et al. Bacterial endosymbiont localization in Hyalesthes obsoletus , the insect vector of bois noir in Vitis vinifera . Appl Environ Microbiol 2011; 77: 1423 1435 [CrossRef] [PubMed]
    [Google Scholar]
  305. Grouzdev DS, Rysina MS, Bryantseva IA, Gorlenko VM, Gaisin VA. Draft genome sequences of 'Candidatus Chloroploca asiatica' and 'Candidatus Viridilinea mediisalina', candidate representatives of the Chloroflexales order: phylogenetic and taxonomic implications. Stand Genomic Sci 2018; 13: 24 [CrossRef] [PubMed]
    [Google Scholar]
  306. Rosas-Pérez T, Rosenblueth M, Rincón-Rosales R, Mora J, Martínez-Romero E. Genome sequence of "Candidatus Walczuchella monophlebidarum" the flavobacterial endosymbiont of Llaveia axin axin (Hemiptera: Coccoidea: Monophlebidae). Genome Biol Evol 2014; 6: 714 726 [CrossRef] [PubMed]
    [Google Scholar]
  307. Klein A, Schrader L, Gil R, Manzano-Marín A, Flórez L et al. A novel intracellular mutualistic bacterium in the invasive ant Cardiocondyla obscurior . ISME J 2016; 10: 376 388 [CrossRef] [PubMed]
    [Google Scholar]
  308. Friedman CS, Andree KB, Beauchamp KA, Moore JD, Robbins TT et al. 'Candidatus Xenohaliotis californiensis', a newly described pathogen of abalone, Haliotis spp., along the West coast of North America. Int J Syst Evol Microbiol 2000; 50: 847 855 [CrossRef]
    [Google Scholar]
  309. Kwan JC, Schmidt EW. Bacterial endosymbiosis in a chordate host: long-term co-evolution and conservation of secondary metabolism. PLoS One 2013; 8: e080822 [CrossRef]
    [Google Scholar]
  310. Vandekerckhove TT, Willems A, Gillis M, Coomans A. Occurrence of novel verrucomicrobial species, endosymbiotic and associated with parthenogenesis in Xiphinema americanum-group species (Nematoda, Longidoridae). Int J Syst Evol Microbiol 2000; 50: 2197 2205 [CrossRef] [PubMed]
    [Google Scholar]
  311. McCutcheon JP, Moran NA. Functional convergence in reduced genomes of bacterial symbionts spanning 200 My of evolution. Genome Biol Evol 2010; 2: 708 718 [CrossRef] [PubMed]
    [Google Scholar]
  312. Albertsen M, McIlroy SJ, Stokholm-Bjerregaard M, Karst SM, Nielsen PH. Candidatus Propionivibrio aalborgensis”: a novel glycogen accumulating organism abundant in full-scale enhanced biological phosphorus removal plants. Front Microbiol 2016; 7: 1033 [CrossRef]
    [Google Scholar]
  313. Sood N, Pradhan PK, Verma DK, Yadav MK, Dev AK et al. Candidatus Actinochlamydia pangasiae sp. nov. (Chlamydiales: Actinochalamydiaceae), a bacterium associated with epitheliocystis in Pangasianodon hypophthalmus . J Fish Dis 2018; 41: 281 290 [CrossRef] [PubMed]
    [Google Scholar]
  314. Martel A, Adriaensen C, Sharifian-Fard M, Vandewoestyne M, Deforce D et al. The novel 'Candidatus Amphibiichlamydia ranarum' is highly prevalent in invasive exotic bullfrogs (Lithobates catesbeianus). Environ Microbiol Rep 2013; 5: 105 108 [CrossRef] [PubMed]
    [Google Scholar]
  315. Degnan PH, Lazarus AB, Wernegreen JJ. Genome sequence of Blochmannia pennsylvanicus indicates parallel evolutionary trends among bacterial mutualists of insects. Genome Res 2005; 15: 1023 1033 [CrossRef] [PubMed]
    [Google Scholar]
  316. Williams LE, Wernegreen JJ. Unprecedented loss of ammonia assimilation capability in a urease-encoding bacterial mutualist. BMC Genomics 2010; 11: 687 [CrossRef]
    [Google Scholar]
  317. Kartal B, van Niftrik L, Sliekers O, Schmid MC, Schmidt I et al. Application, eco-physiology and biodiversity of anaerobic ammonium-oxidizing bacteria. Rev Environ Sci Biotechnol 2004; 3: 255 264 [CrossRef]
    [Google Scholar]
  318. Narita Y, Zhang L, Kimura Z-I, Ali M, Fujii T et al. Enrichment and physiological characterization of an anaerobic ammonium-oxidizing bacterium 'Candidatus Brocadia sapporoensis'. Syst Appl Microbiol 2017; 40: 448 457 [CrossRef] [PubMed]
    [Google Scholar]
  319. Hu BL, Zheng P, Tang CJ, Chen JW, van der Biezen E et al. Identification and quantification of anammox bacteria in eight nitrogen removal reactors. Water Res 2010; 44: 5014 5020 [CrossRef] [PubMed]
    [Google Scholar]
  320. Karnachuk OV, Frank YA, Lukina AP, Kadnikov VV, Beletsky AV et al. Domestication of previously uncultivated Candidatus Desulforudis audaxviator from a deep aquifer in Siberia sheds light on its physiology and evolution. ISME J 2019; 13: 1947 1959 [CrossRef] [PubMed]
    [Google Scholar]
  321. Lim GE, Haygood MG. "Candidatus Endobugula glebosa," a specific bacterial symbiont of the marine bryozoan Bugula simplex . Appl Environ Microbiol 2004; 70: 4921 4929 [CrossRef] [PubMed]
    [Google Scholar]
  322. Wilson MC, Mori T, Rückert C, Uria AR, Helf MJ et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 2014; 506: 58 62 [CrossRef]
    [Google Scholar]
  323. Ueoka R, Uria AR, Reiter S, Mori T, Karbaum P et al. Metabolic and evolutionary origin of actin-binding polyketides from diverse organisms. Nat Chem Biol 2015; 11: 705 712 [CrossRef] [PubMed]
    [Google Scholar]
  324. Utami YD, Kuwahara H, Murakami T, Morikawa T, Sugaya K et al. Phylogenetic diversity and single-cell genome analysis of "Melainabacteria", a non-photosynthetic cyanobacterial group, in the termite gut. Microbes Environ 2018; 33: 50 57 [CrossRef] [PubMed]
    [Google Scholar]
  325. Serra V, Fokin SI, Castelli M, Basuri CK, Nitla V et al. "Candidatus Gortzia shahrazadis", a novel endosymbiont of Paramecium multimicronucleatum and a revision of the biogeographical distribution of Holospora-like bacteria. Front Microbiol 2016; 7: 1704 [CrossRef] [PubMed]
    [Google Scholar]
  326. Ali M, Oshiki M, Awata T, Isobe K, Kimura Z et al. Physiological characterization of anaerobic ammonium oxidizing bacterium 'Candidatus Jettenia caeni'. Environ Microbiol 2015; 17: 2172 2189 [CrossRef] [PubMed]
    [Google Scholar]
  327. Botchkova EA, Litti YV, Novikov AA, Grouzdev DS, Bochkareva ES et al. Description of “Candidatus Jettenia ecosi” sp. nov., a new species of anammox bacteria. Microbiology 2018; 87: 766 776 [CrossRef]
    [Google Scholar]
  328. Nikolaev YA, Kozlov MN, Kevbrina MV, Dorofeev AG, Pimenov NV et al. Candidatus “Jettenia moscovienalis” sp. nov., a new species of bacteria carrying out anaerobic ammonium oxidation. Mikrobiologiya (Russian) 2015; 84: 236 243 [CrossRef]
    [Google Scholar]
  329. Silva FM, Kostygov AY, Spodareva VV, Butenko A, Tossou R et al. The reduced genome of Candidatus Kinetoplastibacterium sorsogonicusi, the endosymbiont of Kentomonas sorsogonicus (Trypanosomatidae): loss of the haem-synthesis pathway. Parasitology 2018; 145: 1287 1293 [CrossRef]
    [Google Scholar]
  330. Chen YR, Zhang WY, Zhou K, Pan HM, Du HJ et al. Novel species and expanded distribution of ellipsoidal multicellular magnetotactic prokaryotes. Environ Microbiol Rep 2016; 8: 218 226 [CrossRef] [PubMed]
    [Google Scholar]
  331. Spring S, Amann R, Ludwig W, Schleifer KH, van Gemerden H et al. Dominating role of an unusual magnetotactic bacterium in the microaerobic zone of a freshwater sediment. Appl Environ Microbiol 1993; 59: 2397 2403 [PubMed]
    [Google Scholar]
  332. Lin W, Deng A, Wang Z, Li Y, Wen T et al. Genomic insights into the uncultured genus 'Candidatus Magnetobacterium' in the phylum Nitrospirae . ISME J 2014; 8: 2463 2477 [CrossRef] [PubMed]
    [Google Scholar]
  333. Zhang R, Chen YR, Du HJ, Zhang WY, Pan HM et al. Characterization and phylogenetic identification of a species of spherical multicellular magnetotactic prokaryotes that produces both magnetite and greigite crystals. Res Microbiol 2014; 165: 481 489 [CrossRef] [PubMed]
    [Google Scholar]
  334. Zhou K, Zhang WY, Pan HM, Li J-H, Yue HD et al. Adaptation of spherical multicellular magnetotactic prokaryotes to the geochemically variable habitat of an intertidal zone. Environ Microbiol 2013; 15: 1595 1605 [CrossRef] [PubMed]
    [Google Scholar]
  335. Shivani Y, Subhash Y, Sasikala C, Ramana CV. Description of 'Candidatus Marispirochaeta associata' and reclassification of Spirochaeta bajacaliforniensis, Spirochaeta smaragdinae and Spirochaeta sinaica to a new genus Sediminispirochaeta gen. nov. as Sediminispirochaeta bajacaliforniensis comb. nov., Sediminispirochaeta smaragdinae comb. nov. and Sediminispirochaeta sinaica comb. nov. Int J Syst Evol Microbiol 2016; 66: 5485 5492 [CrossRef] [PubMed]
    [Google Scholar]
  336. Corsaro D, Michel R, Walochnik J, Müller K-D, Greub G et al. Saccamoeba lacustris, sp. nov. (Amoebozoa: Lobosea: Hartmannellidae), a new lobose amoeba, parasitized by the novel chlamydia 'Candidatus Metachlamydia lacustris' (Chlamydiae: Parachlamydiaceae). Eur J Protistol 2010; 46: 86 95 [CrossRef] [PubMed]
    [Google Scholar]
  337. Erikstad H-A, Birkeland N-K. Draft genome sequence of “Candidatus Methylacidiphilum kamchatkense” strain Kam1, a thermoacidophilic methanotrophic verrucomicrobium. Genome Announc 2015; 3: e00065 15 [CrossRef] [PubMed]
    [Google Scholar]
  338. Erikstad H-A, Jensen S, Keen TJ, Birkeland N-K. Differential expression of particulate methane monooxygenase genes in the verrucomicrobial methanotroph 'Methylacidiphilum kamchatkense' Kam1. Extremophiles 2012; 16: 405 409 [CrossRef] [PubMed]
    [Google Scholar]
  339. Versantvoort W, Guerrero-Cruz S, Speth DR, Frank J, Gambelli L et al. Comparative genomics of Candidatus Methylomirabilis lanthanidiphila. Front Microbiol 2018; 9: 1672
    [Google Scholar]
  340. Graf JS, Mayr MJ, Marchant HK, Tienken D, Hach PF et al. Bloom of a denitrifying methanotroph, 'Candidatus Methylomirabilis limnetica', in a deep stratified lake. Environ Microbiol 2018; 20: 2598 2614 [CrossRef] [PubMed]
    [Google Scholar]
  341. He Z, Cai C, Wang J, Xu X, Zheng P et al. A novel denitrifying methanotroph of the NC10 phylum and its microcolony. Sci Rep 2016; 6: 32241 [CrossRef] [PubMed]
    [Google Scholar]
  342. Gofton AW, Doggett S, Ratchford A, Ryan U, Irwin P. Phylogenetic characterisation of two novel Anaplasmataceae from Australian Ixodes holocyclus ticks: 'Candidatus Neoehrlichia australis' and 'Candidatus Neoehrlichia arcana'. Int J Syst Evol Microbiol 2016; 66: 4256 4261 [CrossRef] [PubMed]
    [Google Scholar]
  343. Müller A, Monti G, Otth C, Sepúlveda P, Bittencourt P et al. "Candidatus Neoehrlichia chilensis" sp. nov.: Molecular detection and characterization of a novel Anaplasmataceae in wild rodents from Valdivia, southern Chile. Transbound Emerg Dis 2018; 65: 357 362 [CrossRef] [PubMed]
    [Google Scholar]
  344. Yabsley MJ, Murphy SM, Luttrell MP, Wilcox BR, Howerth EW et al. Characterization of 'Candidatus Neoehrlichia lotoris' (family Anaplasmataceae) from raccoons (Procyon lotor). Int J Syst Evol Microbiol 2008; 58: 2794 2798 [CrossRef]
    [Google Scholar]
  345. Levantesi C, Rossetti S, Thelen K, Kragelund C, Krooneman J et al. Phylogeny, physiology and distribution of 'Candidatus Microthrix calida', a new Microthrix species isolated from industrial activated sludge wastewater treatment plants. Environ Microbiol 2006; 8: 1552 1563 [CrossRef] [PubMed]
    [Google Scholar]
  346. Abby SS, Melcher M, Kerou M, Krupovic M, Stieglmeier M et al. Candidatus Nitrosocaldus cavascurensis, an ammonia oxidizing, extremely thermophilic archaeon with a highly mobile genome. Front Microbiol 2018; 9: 28 [CrossRef]
    [Google Scholar]
  347. Daebeler A, Herbold CW, Vierheilig J, Sedlacek CJ, Pjevac P et al. Cultivation and genomic analysis of "Candidatus Nitrosocaldus islandicus," an obligately thermophilic, ammonia-oxidizing thaumarchaeon from a hot spring biofilm in Graendalur Valley, Iceland. Front Microbiol 2018; 9: 193 [CrossRef] [PubMed]
    [Google Scholar]
  348. Sauder LA, Albertsen M, Engel K, Schwarz J, Nielsen PH et al. Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME J 2017; 11: 1142 1157 [CrossRef]
    [Google Scholar]
  349. Herbold CW, Lehtovirta-Morley LE, Jung M-Y, Jehmlich N, Hausmann B et al. Ammonia-oxidising archaea living at low pH: insights from comparative genomics. Environ Microbiol 2017; 19: 4939 4952 [CrossRef] [PubMed]
    [Google Scholar]
  350. Sauder LA, Engel K, Lo C-C, Chain P, Neufeld JD. Cultivation and characterization of Candidatus Nitrosotenuis aquarius, an ammonia-oxidizing archaeon from a freshwater aquarium biofilter. Appl Environ Microbiol 2018; 84: pii: e01430-18
    [Google Scholar]
  351. Jung M-Y, Park S-J, Kim S-J, Kim J-G, Sinninghe Damsté JS et al. A mesophilic, autotrophic, ammonia-oxidizing archaeon of thaumarchaeal group I.1a cultivated from a deep oligotrophic soil horizon. Appl Environ Microbiol 2014; 80: 3645 3655 [CrossRef] [PubMed]
    [Google Scholar]
  352. Li Y, Ding K, Wen X, Zhang B, Shen B et al. A novel ammonia-oxidizing archaeon from wastewater treatment plant: its enrichment, physiological and genomic characteristics. Sci Rep 2016; 6: 23747 [CrossRef]
    [Google Scholar]
  353. Kitzinger K, Koch H, Lücker S, Sedlacek CJ, Herbold C et al. Characterization of the first “Candidatus Nitrotoga” isolate reveals metabolic versatility and separate evolution of widespread nitrite-oxidizing bacteria. mBio 2018; 9: e01186 [CrossRef]
    [Google Scholar]
  354. Hendry TA, Dunlap PV. Phylogenetic divergence between the obligate luminous symbionts of flashlight fishes demonstrates specificity of bacteria to host genera. Environ Microbiol Rep 2014; 6: 331 338 [CrossRef] [PubMed]
    [Google Scholar]
  355. Davis RE, Zhao Y, Dally EL, Jomantiene R, Lee I-M et al. 'Candidatus Phytoplasma sudamericanum', a novel taxon, and strain PassWB-Br4, a new subgroup 16SrIII-V phytoplasma, from diseased passion fruit (Passiflora edulis f. flavicarpa Deg.). Int J Syst Evol Microbiol 2012; 62: 984 989 [CrossRef] [PubMed]
    [Google Scholar]
  356. Marcone C, Gibb KS, Streten C, Schneider B. 'Candidatus Phytoplasma spartii', 'Candidatus Phytoplasma rhamni' and 'Candidatus Phytoplasma allocasuarinae', respectively associated with spartium witches'-broom, buckthorn witches'-broom and allocasuarina yellows diseases. Int J Syst Evol Microbiol 2004; 54: 1025 1029 [CrossRef] [PubMed]
    [Google Scholar]
  357. Lee I-M, Bottner KD, Secor G, Rivera-Varas V. "Candidatus Phytoplasma americanum", a phytoplasma associated with a potato purple top wilt disease complex. Int J Syst Evol Microbiol 2006; 56: 1593 1597 [CrossRef] [PubMed]
    [Google Scholar]
  358. Lee I-M, Gundersen-Rindal DE, Davis RE, Bottner KD, Marcone C et al. 'Candidatus Phytoplasma asteris', a novel phytoplasma taxon associated with aster yellows and related diseases. Int J Syst Evol Microbiol 2004; 54: 1037 1048 [CrossRef] [PubMed]
    [Google Scholar]
  359. White DT, Blackall LL, Scott PT, Walsh KB. Phylogenetic positions of phytoplasmas associated with dieback, yellow crinkle and mosaic diseases of papaya, and their proposed inclusion in ' Candidatus Phytoplasma australiense' and a new taxon, 'Candidatus Phytoplasma australasia'. Int J Syst Bacteriol 1998; 48: 941 951 [CrossRef]
    [Google Scholar]
  360. Davis RE, Dally EL, Gundersen DE, Lee IM, Habili N. "Candidatus Phytoplasma australiense," a new phytoplasma taxon associated with Australian grapevine yellows. Int J Syst Bacteriol 1997; 47: 262 269 [CrossRef] [PubMed]
    [Google Scholar]
  361. Win NKK, Lee SY, Bertaccini A, Namba S, Jung HY. 'Candidatus Phytoplasma balanitae' associated with witches' broom disease of Balanites triflora . Int J Syst Evol Microbiol 2013; 63: 636 640 [CrossRef] [PubMed]
    [Google Scholar]
  362. Montano HG, Davis RE, Dally EL, Hogenhout S, Pimentel JP et al. 'Candidatus Phytoplasma brasiliense', a new phytoplasma taxon associated with hibiscus witches' broom disease. Int J Syst Evol Microbiol 2001; 51: 1109 1118 [CrossRef] [PubMed]
    [Google Scholar]
  363. Arocha Y, López M, Piñol B, Fernández M, Picornell B et al. 'Candidatus Phytoplasma graminis' and 'Candidatus Phytoplasma caricae', two novel phytoplasmas associated with diseases of sugarcane, weeds and papaya in Cuba. Int J Syst Evol Microbiol 2005; 55: 2451 2463 [CrossRef] [PubMed]
    [Google Scholar]
  364. Jung HY, Sawayanagi T, Kakizawa S, Nishigawa H, Miyata SI et al. 'Candidatus Phytoplasma castaneae', a novel phytoplasma taxon associated with chestnut witches' broom disease. Int J Syst Evol Microbiol 2002; 52: 1543 1549 [CrossRef] [PubMed]
    [Google Scholar]
  365. Šafárová D, Zemánek T, Válová P, Navrátil M. 'Candidatus Phytoplasma cirsii', a novel taxon from creeping thistle [Cirsium arvense (L.) Scop]. Int J Syst Evol Microbiol 2016; 66: 1745 1753 [CrossRef] [PubMed]
    [Google Scholar]
  366. Zreik L, Carle P, Bové JM, Garnier M. Characterization of the mycoplasmalike organism associated with witches'-broom disease of lime and proposition of a Candidatus taxon for the organism, "Candidatus Phytoplasma aurantifolia". Int J Syst Bacteriol 1995; 45: 449 453 [CrossRef] [PubMed]
    [Google Scholar]
  367. Martini M, Marcone C, Mitrović J, Maixner M, Delić D et al. 'Candidatus Phytoplasma convolvuli', a new phytoplasma taxon associated with bindweed yellows in four European countries. Int J Syst Evol Microbiol 2012; 62: 2910 2915 [CrossRef] [PubMed]
    [Google Scholar]
  368. Lee I-M, Bottner-Parker KD, Zhao Y, Villalobos W, Moreira L. 'Candidatus Phytoplasma costaricanum' a novel phytoplasma associated with an emerging disease in soybean (Glycine max). Int J Syst Evol Microbiol 2011; 61: 2822 2826 [CrossRef] [PubMed]
    [Google Scholar]
  369. Marcone C, Schneider B, Seemüller E. 'Candidatus Phytoplasma cynodontis', the phytoplasma associated with Bermuda grass white leaf disease. Int J Syst Evol Microbiol 2004; 54: 1077 1082 [CrossRef] [PubMed]
    [Google Scholar]
  370. Valiunas D, Staniulis J, Davis RE. 'Candidatus Phytoplasma fragariae', a novel phytoplasma taxon discovered in yellows diseased strawberry, Fragaria x ananassa . Int J Syst Evol Microbiol 2006; 56: 277 281 [CrossRef] [PubMed]
    [Google Scholar]
  371. Griffiths HM, Sinclair WA, Smart CD, Davis RE. The phytoplasma associated with ash yellows and lilac witches'-broom: 'Candidatus Phytoplasma fraxini'. Int J Syst Bacteriol 1999; 49: 1605 1614 [CrossRef] [PubMed]
    [Google Scholar]
  372. Davis RE, Harrison NA, Zhao Y, Wei W, Dally EL. 'Candidatus Phytoplasma hispanicum', a novel taxon associated with Mexican periwinkle virescence disease of Catharanthus roseus . Int J Syst Evol Microbiol 2016; 66: 3463 3467 [CrossRef] [PubMed]
    [Google Scholar]
  373. Sawayanagi T, Horikoshi N, Kanehira T, Shinohara M, Bertaccini A et al. 'Candidatus Phytoplasma japonicum', a new phytoplasma taxon associated with Japanese Hydrangea phyllody. Int J Syst Bacteriol 1999; 49: 1275 1285 [CrossRef] [PubMed]
    [Google Scholar]
  374. Davis RE, Zhao Y, Wei W, Dally EL, Lee I-M. 'Candidatus Phytoplasma luffae', a novel taxon associated with witches' broom disease of loofah, Luffa aegyptica Mill. Int J Syst Evol Microbiol 2017; 67: 3127 3133 [CrossRef] [PubMed]
    [Google Scholar]
  375. Arocha Y, Antesana O, Montellano E, Franco P, Plata G et al. 'Candidatus Phytoplasma lycopersici', a phytoplasma associated with 'hoja de perejil' disease in Bolivia. Int J Syst Evol Microbiol 2007; 57: 1704 1710 [CrossRef] [PubMed]
    [Google Scholar]
  376. Nejat N, Vadamalai G, Davis RE, Harrison NA, Sijam K et al. 'Candidatus Phytoplasma malaysianum', a novel taxon associated with virescence and phyllody of Madagascar periwinkle (Catharanthus roseus). Int J Syst Evol Microbiol 2013; 63: 540 548 [CrossRef]
    [Google Scholar]
  377. Seemüller E, Schneider B. 'Candidatus Phytoplasma mali', 'Candidatus Phytoplasma pyri' and 'Candidatus Phytoplasma prunorum', the causal agents of apple proliferation, pear decline and European stone fruit yellows, respectively. Int J Syst Evol Microbiol 2004; 54: 1217 1226 [CrossRef] [PubMed]
    [Google Scholar]
  378. Fernández FD, Galdeano E, Kornowski MV, Arneodo JD, Conci LR. Description of 'Candidatus Phytoplasma meliae', a phytoplasma associated with Chinaberry (Melia azedarach L.) yellowing in South America. Int J Syst Evol Microbiol 2016; 66: 5244 5251 [CrossRef] [PubMed]
    [Google Scholar]
  379. Miyazaki A, Shigaki T, Koinuma H, Iwabuchi N, Rauka GB et al. 'Candidatus Phytoplasma noviguineense', a novel taxon associated with Bogia coconut syndrome and banana wilt disease on the island of New Guinea. Int J Syst Evol Microbiol 2018; 68: 170 175 [CrossRef] [PubMed]
    [Google Scholar]
  380. Al-Saady NA, Khan AJ, Calari A, Al-Subhi AM, Bertaccini A. 'Candidatus Phytoplasma omanense', associated with witches'-broom of Cassia italica (Mill.) Spreng. in Oman. Int J Syst Evol Microbiol 2008; 58: 461 466 [CrossRef] [PubMed]
    [Google Scholar]
  381. Jung HY, Sawayanagi T, Wongkaew P, Kakizawa S, Nishigawa H et al. "Candidatus Phytoplasma oryzae", a novel phytoplasma taxon associated with rice yellow dwarf disease. Int J Syst Evol Microbiol 2003b; 53: 1925 1929 [CrossRef] [PubMed]
    [Google Scholar]
  382. Harrison NA, Davis RE, Oropeza C, Helmick EE, Narváez M et al. 'Candidatus Phytoplasma palmicola', associated with a lethal yellowing-type disease of coconut (Cocos nucifera L.) in Mozambique. Int J Syst Evol Microbiol 2014; 64: 1890 1899 [CrossRef] [PubMed]
    [Google Scholar]
  383. Verdin E et al. 'Candidatus Phytoplasma phoenicium' sp. nov., a novel phytoplasma associated with an emerging lethal disease of almond trees in Lebanon and Iran. Int J Syst Evol Microbiol 2003; 53: 833 838 [CrossRef]
    [Google Scholar]
  384. Schneider B, Torres E, Martín MP, Schröder M, Behnke H-D et al. 'Candidatus Phytoplasma pini', a novel taxon from Pinus silvestris and Pinus halepensis . Int J Syst Evol Microbiol 2005; 55: 303 307 [CrossRef] [PubMed]
    [Google Scholar]
  385. Davis RE, Zhao Y, Dally EL, Lee I-M, Jomantiene R et al. 'Candidatus Phytoplasma pruni', a novel taxon associated with X-disease of stone fruits, Prunus spp.: multilocus characterization based on 16S rRNA, secY, and ribosomal protein genes. Int J Syst Evol Microbiol 2013; 63: 766 776 [CrossRef]
    [Google Scholar]
  386. Malembic-Maher S, Salar P, Filippin L, Carle P, Angelini E et al. Genetic diversity of European phytoplasmas of the 16SrV taxonomic group and proposal of 'Candidatus Phytoplasma rubi'. Int J Syst Evol Microbiol 2011; 61: 2129 2134 [CrossRef] [PubMed]
    [Google Scholar]
  387. Quaglino F, Zhao Y, Casati P, Bulgari D, Bianco PA et al. 'Candidatus Phytoplasma solani', a novel taxon associated with stolbur- and bois noir-related diseases of plants. Int J Syst Evol Microbiol 2013; 63: 2879 2894 [CrossRef]
    [Google Scholar]
  388. Zhao Y, Sun Q, Wei W, Davis RE, Wu W et al. 'Candidatus Phytoplasma tamaricis', a novel taxon discovered in witches'-broom-diseased salt cedar (Tamarix chinensis Lour.). Int J Syst Evol Microbiol 2009; 59: 2496 2504 [CrossRef]
    [Google Scholar]
  389. Hiruki C, Wang K. Clover proliferation phytoplasma: 'Candidatus Phytoplasma trifolii'. Int J Syst Evol Microbiol 2004; 54: 1349 1353 [CrossRef] [PubMed]
    [Google Scholar]
  390. Lee I-M, Martini M, Marcone C, Zhu SF. Classification of phytoplasma strains in the elm yellows group (16SrV) and proposal of 'Candidatus Phytoplasma ulmi' for the phytoplasma associated with elm yellows. Int J Syst Evol Microbiol 2004; 54: 337 347 [CrossRef] [PubMed]
    [Google Scholar]
  391. Marzorati M, Alma A, Sacchi L, Pajoro M, Palermo S et al. A novel Bacteroidetes symbiont is localized in Scaphoideus titanus, the insect vector of flavescence dorée in Vitis vinifera . Appl Environ Microbiol 2006; 72: 1467 1475 [CrossRef] [PubMed]
    [Google Scholar]
  392. Naderali N, Nejat N, Vadamalai G, Davis RE, Wei W et al. ‘Candidatus Phytoplasma wodyetiae’, a new taxon associated with yellow decline disease of foxtail palm (Wodyetia bifurcata) in Malaysia. Int J Syst Evol Microbiol 2017; 67: 3765 3772 [CrossRef]
    [Google Scholar]
  393. Jung HY, Sawayanagi T, Kakizawa S, Nishigawa H, Wei W et al. 'Candidatus Phytoplasma ziziphi', a novel phytoplasma taxon associated with jujube witches'-broom disease. Int J Syst Evol Microbiol 2003; 53: 1037 1041 [CrossRef] [PubMed]
    [Google Scholar]
  394. Kostanjšek R, Štrus J, Drobne D, Avguštin G. 'Candidatus Rhabdochlamydia porcellionis', an intracellular bacterium from the hepatopancreas of the terrestrial isopod Porcellio scaber (Crustacea: Isopoda). Int J Syst Evol Microbiol 2004; 54: 543 549 [CrossRef] [PubMed]
    [Google Scholar]
  395. Allen JM, Reed DL, Perotti MA, Braig HR. Evolutionary relationships of "Candidatus Riesia spp.," endosymbiotic enterobacteriaceae living within hematophagous primate lice. Appl Environ Microbiol 2007; 73: 1659 1664 [CrossRef] [PubMed]
    [Google Scholar]
  396. Schmid M, Walsh K, Webb R, Rijpstra WI, van de Pas-Schoonen K et al. Candidatus “Scalindua brodae”, sp. nov., Candidatus “Scalindua wagneri”, sp. nov., two new species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol 2003; 26: 529 538 [CrossRef] [PubMed]
    [Google Scholar]
  397. Ahmed S, Shakeela Q, Khan I, Nouroz F, Niaz Z. Molecular detection of Candidatus Scalindua flavia, study of anammox bacterial community structure, composition in the sediments of the East China Sea and the Yellow Sea. Indian J Geo Mar Sci 2017; 46: 33 47
    [Google Scholar]
  398. Oshiki M, Mizuto K, Kimura ZI, Kindaichi T, Satoh H et al. Genetic diversity of marine anaerobic ammonium-oxidizing bacteria as revealed by genomic and proteomic analyses of 'Candidatus Scalindua japonica'. Environ Microbiol Rep 2017; 9: 550 561 [CrossRef] [PubMed]
    [Google Scholar]
  399. Dang H, Zhou H, Zhang Z, Yu Z, Hua E et al. Molecular detection of Candidatus Scalindua pacifica and environmental responses of sediment anammox bacterial community in the Bohai Sea, China. PLoS One 2013; 8: e61330 [CrossRef] [PubMed]
    [Google Scholar]
  400. van de Vossenberg J, Woebken D, Maalcke WJ, Wessels HJCT, Dutilh BE et al. The metagenome of the marine anammox bacterium 'Candidatus Scalindua profunda' illustrates the versatility of this globally important nitrogen cycle bacterium. Environ Microbiol 2013; 15: 1275 1289 [CrossRef] [PubMed]
    [Google Scholar]
  401. Fuchsman CA, Staley JT, Oakley BB, Kirkpatrick JB, Murray JW. Free-living and aggregate-associated Planctomycetes in the Black Sea. FEMS Microbiol Ecol 2012; 80: 402 416 [CrossRef] [PubMed]
    [Google Scholar]
  402. Speth DR, Lagkouvardos I, Wang Y, Qian PY, Dutilh BE et al. Draft genome of Scalindua rubra, obtained from the interface above the discovery deep brine in the Red Sea, sheds light on potential salt adaptation strategies in anammox bacteria. Microb Ecol 2017; 74: 1 5 [CrossRef] [PubMed]
    [Google Scholar]
  403. Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jørgensen BB et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 2003; 422: 608 611 [CrossRef] [PubMed]
    [Google Scholar]
  404. Taylor-Brown A, Pillonel T, Bridle A, Qi W, Bachmann NL et al. Culture-Independent genomics of a novel chlamydial pathogen of fish provides new insight into host-specific adaptations utilized by these intracellular bacteria. Environ Microbiol 2017a; 19: 1899 1913 [CrossRef]
    [Google Scholar]
  405. Steigen A, Karlsbakk E, Plarre H, Watanabe K, Øvergård A-C et al. A new intracellular bacterium, Candidatus Similichlamydia labri sp. nov. (Chlamydiaceae) producing epitheliocysts in ballan wrasse, Labrus bergylta (Pisces, Labridae). Arch Microbiol 2015; 197: 311 318 [CrossRef] [PubMed]
    [Google Scholar]
  406. Stride MC, Polkinghorne A, Powell MD, Nowak BF. "Candidatus Similichlamydia laticola", a novel Chlamydia-like agent of epitheliocystis in seven consecutive cohorts of farmed Australian barramundi, Lates calcarifer (Bloch). PLoS One 2013; 8: e82889 [CrossRef] [PubMed]
    [Google Scholar]
  407. Metchnikoff E. Contributions l’étude du pléomorphisme des bactériens. Ann Inst Pasteur 1889; 3: 61 68
    [Google Scholar]
  408. Viale E, Martinez-Sañudo I, Brown JM, Simonato M, Girolami V et al. Pattern of association between endemic Hawaiian fruit flies (Diptera, Tephritidae) and their symbiotic bacteria: Evidence of cospeciation events and proposal of “Candidatus Stammerula trupaneae”. Mol Phylogenet Evol 2015; 90: 67 79 [CrossRef]
    [Google Scholar]
  409. Park S-J, Ghai R, Martín-Cuadrado AB, Rodríguez-Valera F, Jung MY et al. Draft genome sequence of the sulfur-oxidizing bacterium "Candidatus Sulfurovum sediminum" AR, which belongs to the Epsilonproteobacteria . J Bacteriol 2012; 194: 4128 4129 [CrossRef] [PubMed]
    [Google Scholar]
  410. Nylund S, Steigen A, Karlsbakk E, Plarre H, Andersen L et al. Characterization of 'Candidatus Syngnamydia salmonis' (Chlamydiales, Simkaniaceae), a bacterium associated with epitheliocystis in Atlantic salmon (Salmo salar L.). Arch Microbiol 2015; 197: 17 25 [CrossRef] [PubMed]
    [Google Scholar]
  411. Petersen JM, Kemper A, Gruber-Vodicka H, Cardini U, van der Geest M et al. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat Microbiol 2017; 2: 16195 [CrossRef]
    [Google Scholar]
  412. Callbeck CM, Lavik G, Ferdelman TG, Fuchs B, Gruber-Vodicka HR et al. Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key sulfur oxidizing bacteria. Nat Commun 2018; 9: 1729 [CrossRef] [PubMed]
    [Google Scholar]
  413. Ponnudurai R, Sayavedra L, Kleiner M, Heiden SE, Thürmer A et al. Genome sequence of the sulfur-oxidizing Bathymodiolus thermophilus gill endosymbiont. Stand Genomic Sci 2017; 12: 50 [CrossRef]
    [Google Scholar]
  414. López-Legentil S, Song B, Bosch M, Pawlik JR, Turon X. Cyanobacterial diversity and a new Acaryochoris-like symbiont from Bbahamian sea-squirts. PLoS One 2011; 6: e23938 [CrossRef] [PubMed]
    [Google Scholar]
  415. Salman V, Berben T, Bowers RM, Woyke T, Teske A et al. Insights into the single cell draft genome of "Candidatus Achromatium palustre". Stand Genomic Sci 2016; 11: 28 [CrossRef] [PubMed]
    [Google Scholar]
  416. Giaveno MA, Urbieta MS, Ulloa JR, Toril EG, Donati ER. Physiologic versatility and growth flexibility as the main characteristics of a novel thermoacidophilic Acidianus strain isolated from Copahue geothermal area in Argentina. Microb Ecol 2013; 65: 336 346 [CrossRef] [PubMed]
    [Google Scholar]
  417. Drancourt M, Berger P, Raoult D. Systematic 16S rRNA gene sequencing of atypical clinical isolates identified 27 new bacterial species associated with humans. J Clin Microbiol 2004; 42: 2197 2202 [CrossRef] [PubMed]
    [Google Scholar]
  418. Guo W-P, Tian J-H, Lin X-D, Ni X-B, Chen X-P et al. Extensive genetic diversity of Rickettsiales bacteria in multiple mosquito species. Sci Rep 2016; 6: 38770 [CrossRef] [PubMed]
    [Google Scholar]
  419. Lbacha HA, Zouagui Z, Alali S, Rhalem A, Petit E et al. "Candidatus Anaplasma camelii" in one-humped camels (Camelus dromedarius) in Morocco: a novel and emerging Anaplasma species?. Infect Dis Poverty 2017; 6: 1 [CrossRef] [PubMed]
    [Google Scholar]
  420. Ehounoud CB, Yao KP, Dahmani M, Achi YL, Amanzougaghene N et al. Multiple pathogens including potential new species in tick vectors in Côte d'Ivoire. PLoS Negl Trop Dis 2016; 10: e0004367 [CrossRef] [PubMed]
    [Google Scholar]
  421. Vanstreels RET, Yabsley MJ, Parsons NJ, Swanepoel L, Pistorius PA. A novel candidate species of Anaplasma that infects avian erythrocytes. Parasit Vectors 2018; 11: 525 [CrossRef] [PubMed]
    [Google Scholar]
  422. Wirsen CO, Sievert SM, Cavanaugh CM, Molyneaux SJ, Ahmad A et al. Characterization of an autotrophic sulfide-oxidizing marine Arcobacter sp. that produces filamentous sulfur. Appl Environ Microbiol 2002; 68: 316 325 [CrossRef]
    [Google Scholar]
  423. Dale C, Beeton M, Harbison C, Jones T, Pontes M. Isolation, pure culture, and characterization of "Candidatus Arsenophonus arthropodicus," an intracellular secondary endosymbiont from the hippoboscid louse fly Pseudolynchia canariensis . Appl Environ Microbiol 2006; 72: 2997 3004 [CrossRef] [PubMed]
    [Google Scholar]
  424. Nováková E, Hypša V, Nguyen P, Husník F, Darby AC. Genome sequence of Candidatus Arsenophonus lipopteni, the exclusive symbiont of a blood sucking fly Lipoptena cervi (Diptera: Hippoboscidae). Stand Genomic Sci 2016; 11: 72 [CrossRef] [PubMed]
    [Google Scholar]
  425. Nováková E, Husník F, Šochová E, Hypša V. Arsenophonus and Sodalis symbionts in louse flies: an analogy to the Wigglesworthia and Sodalis system in tsetse flies. Appl Environ Microbiol 2015; 81: 6189 6199 [CrossRef] [PubMed]
    [Google Scholar]
  426. Fan HW, Lu JB, Ye YX, Yu XP, Zhang CX. Characteristics of the draft genome of "Candidatus Arsenophonus nilaparvatae", a facultative endosymbiont of Nilaparvata lugens . Insect Sci 2016; 23: 478 486 [CrossRef] [PubMed]
    [Google Scholar]
  427. Bressan A, Terlizzi F, Credi R. Independent origins of vectored plant pathogenic bacteria from arthropod-associated Arsenophonus endosymbionts. Microb Ecol 2012; 63: 628 638 [CrossRef] [PubMed]
    [Google Scholar]
  428. McLean JS, Liu Q, Thompson J, Edlund A, Kelley S. Draft genome sequence of "Candidatus Bacteroides periocalifornicus," a new member of the Bacteriodetes phylum found within the oral microbiome of periodontitis patients. Genome Announc 2015; 3: e01485 15 [CrossRef] [PubMed]
    [Google Scholar]
  429. Blazes DL, Mullins K, Smoak BL, Jiang J, Canal E et al. Novel Bartonella agent as cause of verruga peruana. Emerg Infect Dis 2013; 19: 1111 1114 [CrossRef] [PubMed]
    [Google Scholar]
  430. Mullins KE, Hang J, Jiang J, Leguia M, Kasper MR et al. Description of Bartonella ancashensis sp. nov., isolated from the blood of two patients with verruga peruana. Int J Syst Evol Microbiol 2015; 65: 3339 3343
    [Google Scholar]
  431. Kaewmongkol G, Kaewmongkol S, Owen H, Fleming PA, Adams PJ et al. Candidatus Bartonella antechini: a novel Bartonella species detected in fleas and ticks from the yellow-footed antechinus (Antechinus flavipes), an Australian marsupial. Vet Microbiol 2011; 149: 517 521 [CrossRef] [PubMed]
    [Google Scholar]
  432. Kaewmongkol G, Kaewmongkol S, Burmej H, Bennett MD, Fleming PA et al. Diversity of Bartonella species detected in arthropod vectors from animals in Australia. Comp Immunol Microbiol Infect Dis 2011; 34: 411 417 [CrossRef] [PubMed]
    [Google Scholar]
  433. Laroche M, Berenger J-M, Mediannikov O, Raoult D, Parola P. Detection of a potential new Bartonella species "Candidatus Bartonella rondoniensis" in human biting kissing bugs (Reduviidae; Triatominae). PLoS Negl Trop Dis 2017; 11: e0005297 [CrossRef] [PubMed]
    [Google Scholar]
  434. Dahmani M, Sambou M, Scandola P, Raoult D, Fenollar F et al. Bartonella bovis and Candidatus Bartonella davousti in cattle from Senegal. Comp Immunol Microbiol Infect Dis 2017a; 50: 63 69 [CrossRef] [PubMed]
    [Google Scholar]
  435. Alsarraf M, Mohallal EME, Mierzejewska EJ, Behnke-Borowczyk J, Welc-Falęciak R et al. Description of Candidatus Bartonella fadhilae n. sp. and Candidatus Bartonella sanaae n. sp. (Bartonellaceae) from Dipodillus dasyurus and Sekeetamys calurus (Gerbillinae) from the Sinai Massif (Egypt). Vector Borne Zoonotic Dis 2017; 17: 483 494 [CrossRef] [PubMed]
    [Google Scholar]
  436. Lilley TM, Veikkolainen V, Pulliainen AT. Molecular detection of Candidatus Bartonella hemsundetiensis in bats. Vector Borne Zoonotic Dis 2015; 15: 706 708 [CrossRef] [PubMed]
    [Google Scholar]
  437. Breitschwerdt EB, Maggi RG, Cadenas MB, de Paiva Diniz PPV, PPVdeP D. A groundhog, a novel Bartonella sequence, and my father's death. Emerg Infect Dis 2009; 15: 2080 2086 [CrossRef] [PubMed]
    [Google Scholar]
  438. Lin EY, Tsigrelis C, Baddour LM, Lepidi H, Rolain J-M et al. Candidatus Bartonella mayotimonensis and endocarditis. Emerg Infect Dis 2010; 16: 500 503 [CrossRef]
    [Google Scholar]
  439. Chomel BB, McMillan-Cole AC, Kasten RW, Stuckey MJ, Sato S et al. Candidatus Bartonella merieuxii, a potential new zoonotic Bartonella species in canids from Iraq. PLoS Negl Trop Dis 6: e1843 [CrossRef]
    [Google Scholar]
  440. Raya AP, Jaffe DA, Chomel BB, Ota MS, Tsou PM et al. Detection of Bartonella species, including Candidatus Bartonella ovis sp. nov, in ruminants from Mexico and lack of evidence of Bartonella DNA in saliva of common vampire bats (Desmodus rotundus) predating on them. Vet Microbiol 2018; 222: 69 74 [CrossRef] [PubMed]
    [Google Scholar]
  441. Saisongkorh W, Wootta W, Sawanpanyalert P, Raoult D, Rolain JM. “Candidatus Bartonella thailandensis”: A new genotype of Bartonella identified from rodents. Vet Microbiol 2009; 139: 197 201 [CrossRef]
    [Google Scholar]
  442. Hu P, Dubinsky EA, Probst AJ, Wang J, Sieber CMK et al. Simulation of Deepwater Horizon oil plume reveals substrate specialization within a complex community of hydrocarbon degraders. Proc Natl Acad Sci USA 2017; 114: 7432 7437 [CrossRef] [PubMed]
    [Google Scholar]
  443. Fotso Fotso A, Angelakis E, Mouffok N, Drancourt M, Raoult D. Blood-borne Candidatus Borrelia algerica in a patient with prolonged fever in Oran, Algeria. Am J Trop Med Hyg 2015; 93: 1070 1073 [CrossRef] [PubMed]
    [Google Scholar]
  444. Marconi RT, Liveris D, Schwartz I. Identification of novel insertion elements, restriction fragment length polymorphism patterns, and discontinuous 23S rRNA in Lyme disease spirochetes: phylogenetic analyses of rRNA genes and their intergenic spacers in Borrelia japonica sp. nov. and genomic group 21038 (Borrelia andersonii sp. nov.) isolates. J Clin Microbiol 1995; 33: 2427 2434 [PubMed]
    [Google Scholar]
  445. Cutler SJ, Ruzic-Sabljic E, Potkonjak A. Emerging borreliae - expanding beyond Lyme borreliosis. Mol Cell Probes 2017; 31: 22 27 [CrossRef] [PubMed]
    [Google Scholar]
  446. Casjens SR, Fraser-Liggett CM, Mongodin EF, Qiu WG, Dunn JJ et al. Whole genome sequence of an unusual Borrelia burgdorferi sensu lato isolate. J Bacteriol 2011; 193: 1489 1490 [CrossRef] [PubMed]
    [Google Scholar]
  447. Schwan TG, Raffel SJ, Schrumpf ME, Gill JS, Piesman J. Characterization of a novel relapsing fever spirochete in the midgut, coxal fluid, and salivary glands of the bat tick Carios kelleyi . Vector Borne Zoonotic Dis 2009; 9: 643 647 [CrossRef] [PubMed]
    [Google Scholar]
  448. Fingerle V, Pritsch M, Wächtler M, Margos G, Ruske S et al. "Candidatus Borrelia kalaharica" detected from a febrile traveller returning to Germany from vacation in Southern Africa. PLoS Negl Trop Dis 2016; 10: e0004559 [CrossRef] [PubMed]
    [Google Scholar]
  449. Barbour AG, Maupin GO, Teltow GJ, Carter CJ, Piesman J. Identification of an uncultivable Borrelia species in the hard tick Amblyomma americanum: possible agent of a Lyme disease-like illness. J Infect Dis 1996; 173: 403 409 [CrossRef] [PubMed]
    [Google Scholar]
  450. Pritt BS, Mead PS, Johnson DKH, Neitzel DF, Respicio-Kingry LB et al. Identification of a novel pathogenic Borrelia species causing Lyme borreliosis with unusually high spirochaetaemia: a descriptive study. Lancet Infect Dis 2016; 16: 556 564 [CrossRef] [PubMed]
    [Google Scholar]
  451. Mitani H, Talbert A, Fukunaga M. New world relapsing fever Borrelia found in Ornithodoros porcinus ticks in central Tanzania. Microbiol Immunol 2004; 48: 501 505 [CrossRef] [PubMed]
    [Google Scholar]
  452. Carley JG, Pope JH. A new species of Borrelia (B. queenslandica) from Rattus villosissimus in Queensland. Aust J Exp Biol Med Sci 1962; 40: 255 261 [CrossRef] [PubMed]
    [Google Scholar]
  453. Loh S-M, Gillett A, Ryan U, Irwin P, Oskam C. Molecular characterization of 'Candidatus Borrelia tachyglossi' (family Spirochaetaceae) in echidna ticks, Bothriocroton concolor . Int J Syst Evol Microbiol 2017; 67: 1075 1080 [CrossRef] [PubMed]
    [Google Scholar]
  454. Lin T, Gao L, Seyfang A, Oliver JH. 'Candidatus Borrelia texasensis', from the American dog tick Dermacentor variabilis . Int J Syst Evol Microbiol 2005; 55: 685 693 [CrossRef] [PubMed]
    [Google Scholar]
  455. Lemaire B, Vandamme P, Merckx V, Smets E, Dessein S. Bacterial leaf symbiosis in angiosperms: host specificity without co-speciation. PLoS One 2011; 6: e24430 [CrossRef] [PubMed]
    [Google Scholar]
  456. Lemaire B, Robbrecht E, van Wyk B, Van Oevelen S, Verstraete B et al. Identification, origin, and evolution of leaf nodulating symbionts of Sericanthe (Rubiaceae). J Microbiol 2011; 49: 935 941 [CrossRef] [PubMed]
    [Google Scholar]
  457. Sawana A, Adeolu M, Gupta RS. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 2014; 5: 429 [CrossRef] [PubMed]
    [Google Scholar]
  458. Van Oevelen S, De Wachter R, Vandamme P, Robbrecht E, Prinsen E. 'Candidatus Burkholderia calva' and 'Candidatus Burkholderia nigropunctata' as leaf gall endosymbionts of African Psychotria. Int J Syst Evol Microbiol 2004; 54: 2237 2239 [CrossRef]
    [Google Scholar]
  459. Lemaire B, Smets E, Dessein S. Bacterial leaf symbiosis in Ardisia (Myrsinoideae, Primulaceae): molecular evidence for host specificity. Res Microbiol 2011; 162: 528 534 [CrossRef] [PubMed]
    [Google Scholar]
  460. Lemaire B, Van Oevelen S, De Block P, Verstraete B, Smets E et al. Identification of the bacterial endosymbionts in leaf nodules of Pavetta (Rubiaceae). Int J Syst Evol Microbiol 2012; 62: 202 209 [CrossRef] [PubMed]
    [Google Scholar]
  461. Van Oevelen S, De Wachter R, Vandamme P, Robbrecht E, Prinsen E. Identification of the bacterial endosymbionts in leaf galls of Psychotria (Rubiaceae, angiosperms) and proposal of 'Candidatus Burkholderia kirkii' sp. nov. Int J Syst Evol Microbiol 2002; 52: 2023 2027 [CrossRef] [PubMed]
    [Google Scholar]
  462. Taylor-Brown A, Spang L, Borel N, Polkinghorne A. Culture-independent metagenomics supports discovery of uncultivable bacteria within the genus Chlamydia . Sci Rep 2017; 7: 10661 [CrossRef]
    [Google Scholar]
  463. Taylor-Brown A, Bachmann NL, Borel N, Polkinghorne A. Culture-independent genomic characterisation of Candidatus Chlamydia sanzinia, a novel uncultivated bacterium infecting snakes. BMC Genomics 2016; 17: 710 [CrossRef]
    [Google Scholar]
  464. Trinachartvanit W, Maneewong S, Kaenkan W, Usananan P, Baimai V et al. Coxiella-like bacteria in fowl ticks from Thailand. Parasit Vectors 2018; 11: 670 [CrossRef] [PubMed]
    [Google Scholar]
  465. Shivaprasad HL, Cadenas MB, Diab SS, Nordhausen R, Bradway D et al. Coxiella-like infection in psittacines and a toucan. Avian Dis 2008; 52: 426 432 [CrossRef]
    [Google Scholar]
  466. Angelakis E, Mediannikov O, Jos S-L, Berenger J-M, Parola P et al. Candidatus Coxiella massiliensis infection. Emerg Infect Dis 2016; 22: 285 288 [CrossRef] [PubMed]
    [Google Scholar]
  467. Gottlieb Y, Lalzar I, Klasson L. Distinctive genome reduction rates revealed by genomic analyses of two Coxiella-like endosymbionts in ticks. Genome Biol Evol 2015; 7: 1779 1796 [CrossRef] [PubMed]
    [Google Scholar]
  468. Nobu MK, Tamaki H, Kubota K, Liu W-T. Metagenomic characterization of ‘C andidatus Defluviicoccus tetraformis strain TFO71’, a tetrad-forming organism, predominant in an anaerobic-aerobic membrane bioreactor with deteriorated biological phosphorus removal. Environ Microbiol 2014; 16: 2739 2751 [CrossRef]
    [Google Scholar]
  469. Yang Y, Higgins SA, Yan J, Şimşir B, Chourey K et al. Grape pomace compost harbors organohalide-respiring Dehalogenimonas species with novel reductive dehalogenase genes. ISME J 2017; 11: 2767 2780 [CrossRef]
    [Google Scholar]
  470. Sato T, Hongoh Y, Noda S, Hattori S, Ui S et al. Candidatus Desulfovibrio trichonymphae, a novel intracellular symbiont of the flagellate Trichonympha agilis in termite gut. Environ Microbiol 2009; 11: 1007 1015 [CrossRef]
    [Google Scholar]
  471. Vannini C, Rosati G, Verni F, Petroni G. Identification of the bacterial endosymbionts of the marine ciliate Euplotes magnicirratus (Ciliophora, Hypotrichia) and proposal of 'Candidatus Devosia euplotis'. Int J Syst Evol Microbiol 2004; 54: 1151 1156 [CrossRef]
    [Google Scholar]
  472. Rar VA, Pukhovskaya NM, Ryabchikova EI, Vysochina NP, Bakhmetyeva SV et al. Molecular-genetic and ultrastructural characteristics of 'Candidatus Ehrlichia khabarensis', a new member of the Ehrlichia genus. Ticks Tick Borne Dis 2015; 6: 658 667 [CrossRef] [PubMed]
    [Google Scholar]
  473. Brouqui P, Sanogo YO, Caruso G, Merola F, Raoult D. Candidatus Ehrlichia walkerii: a new Ehrlichia detected in Ixodes ricinus tick collected from asymptomatic humans in Northern Italy. Ann N Y Acad Sci 2003; 990: 134 140 [CrossRef] [PubMed]
    [Google Scholar]
  474. Stingl U, Radek R, Yang H, Brune A. "Endomicrobia": cytoplasmic symbionts of termite gut protozoa form a separate phylum of prokaryotes. Appl Environ Microbiol 2005; 71: 1473 1479 [CrossRef] [PubMed]
    [Google Scholar]
  475. Katharios P, Seth-Smith HMB, Fehr A, Mateos JM, Qi W et al. Environmental marine pathogen isolation using mesocosm culture of sharpsnout seabream: striking genomic and morphological features of novel Endozoicomonas sp. Sci Rep 2015; 5: 17609 [CrossRef] [PubMed]
    [Google Scholar]
  476. Hendry TA, Freed LL, Fader D, Fenolio D, Sutton TT et al. Ongoing transposon-mediated genome reduction in the luminous bacterial symbionts of deep-sea ceratoid anglerfishes. mBio 2018; 9: e01033 18 [CrossRef] [PubMed]
    [Google Scholar]
  477. Tagawa M, Matsumoto K, Inokuma H. Molecular detection of Mycoplasma wenyonii and 'Candidatus Mycoplasma haemobos' in cattle in Hokkaido, Japan. Vet Microbiol 2008; 132: 177 180 [CrossRef] [PubMed]
    [Google Scholar]
  478. Gupta RS, Sawnani S, Adeolu M, Alnajar S, Oren A. Phylogenetic framework for the phylum Tenericutes based on genome sequence data: proposal for the creation of a new order Mycoplasmoidales ord. nov., containing two new families Mycoplasmoidaceae fam. nov. and Metamycoplasmataceae fam. nov. harbouring Eperythrozoon, Ureaplasma and five novel genera. Antonie van Leeuwenhoek 2018; 111: 1583 1630 [CrossRef] [PubMed]
    [Google Scholar]
  479. Messick JB, Walker PG, Raphael W, Berent L, Shi X. 'Candidatus Mycoplasma haemodidelphidis' sp. nov., 'Candidatus Mycoplasma haemolamae' sp. nov. and Mycoplasma haemocanis comb. nov., haemotrophic parasites from a naturally infected opossum (Didelphis virginiana), alpaca (Lama pacos) and dog (Canis familiaris): phylogenetic and secondary structural relatedness of their 16S rRNA genes to other mycoplasmas. Int J Syst Evol Microbiol 2002; 52: 693 698 [CrossRef] [PubMed]
    [Google Scholar]
  480. Foley JE, Pedersen NC. 'Candidatus Mycoplasma haemominutum', a low-virulence epierythrocytic parasite of cats. Int J Syst Evol Microbiol 2001; 51: 815 817 [CrossRef] [PubMed]
    [Google Scholar]
  481. Capuzzo C, Firrao G, Mazzon L, Squartini A, Girolami V et al. A coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). Int J Syst Evol Microbiol 2005; 55: 1641 1647
    [Google Scholar]
  482. Banfield JF, Anantharaman K, Williams KH, Thomas BC. Complete 4.55-megabase-pair genome of “ Candidatus Fluviicola riflensis,” curated from short-read metagenomic sequences. Genome Announc 2017; 5: e01299 17 [CrossRef] [PubMed]
    [Google Scholar]
  483. Normand P, Nguyen TV, Battenberg K, Berry AM, Heuvel BV et al. Proposal of 'Candidatus Frankia californiensis', the uncultured symbiont in nitrogen-fixing root nodules of a phylogenetically broad group of hosts endemic to western North America. Int J Syst Evol Microbiol 2017; 67: 3706 3715 [CrossRef] [PubMed]
    [Google Scholar]
  484. Persson T, Benson DR, Normand P, Vanden Heuvel B, Pujic P et al. Genome sequence of "Candidatus Frankia datiscae" Dg1, the uncultured microsymbiont from nitrogen-fixing root nodules of the dicot Datisca glomerata . J Bacteriol 2011; 193: 7017 7018 [CrossRef] [PubMed]
    [Google Scholar]
  485. Nguyen HTT, Nielsen JL, Nielsen PH. 'Candidatus Halomonas phosphatis', a novel polyphosphate-accumulating organism in full-scale enhanced biological phosphorus removal plants. Environ Microbiol 2012; 14: 2826 2837 [CrossRef] [PubMed]
    [Google Scholar]
  486. De Groote D, van Doorn LJ, Ducatelle R, Verschuuren A, Tilmant K et al. Phylogenetic characterization of 'Candidatus Helicobacter bovis', a new gastric helicobacter in cattle. Int J Syst Bacteriol 1999; 49: 1707 1715 [CrossRef] [PubMed]
    [Google Scholar]
  487. Lanzoni O, Fokin SI, Lebedeva N, Migunova A, Petroni G et al. Rare freshwater ciliate Paramecium chlorelligerum Kahl, 1935 and its macronuclear symbiotic bacterium "Candidatus Holospora parva". PLoS One 2016; 11: e0167928 [CrossRef] [PubMed]
    [Google Scholar]
  488. Park M, Yun ST, Kim MS, Chun J, Ahn TI. Phylogenetic characterization of Legionella-like endosymbiotic X-bacteria in Amoeba proteus: a proposal for 'Candidatus Legionella jeonii' sp. nov. Environ Microbiol 2004; 6: 1252 1263 [CrossRef] [PubMed]
    [Google Scholar]
  489. Garnier M, Jagoueix-Eveillard S, Cronje PR, Le Roux HF, Bové JM. Genomic characterization of a liberibacter present in an ornamental rutaceous tree, Calodendrum capense, in the Western Cape province of South Africa. Proposal of 'Candidatus Liberibacter africanus subsp. capensis'. Int J Syst Evol Microbiol 2000; 50: 2119 2125 [CrossRef] [PubMed]
    [Google Scholar]
  490. Jagoueix S, Bove JM, Garnier M. The phloem-limited bacterium of greening disease of citrus is a member of the α subdivision of the Proteobacteria . Int J Syst Bacteriol 1994; 44: 379 386 [CrossRef] [PubMed]
    [Google Scholar]
  491. Teixeira DdoC, Saillard C, Eveillard S, Danet JL, da Costa PI et al. 'Candidatus Liberibacter americanus', associated with citrus huanglongbing (greening disease) in São Paulo state, Brazil. Int J Syst Evol Microbiol 2005; 55: 1857 1862 [CrossRef] [PubMed]
    [Google Scholar]
  492. Raddadi N, Gonella E, Camerota C, Pizzinat A, Tedeschi R et al. 'Candidatus Liberibacter europaeus' sp. nov. that is associated with and transmitted by the psyllid Cacopsylla pyri apparently behaves as an endophyte rather than a pathogen. Environ Microbiol 2011; 13: 414 426 [CrossRef] [PubMed]
    [Google Scholar]
  493. Hansen AK, Trumble JT, Stouthamer R, Paine TD. A new huanglongbing species, "Candidatus Liberibacter psyllaurous," found to infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Sulc). Appl Environ Microbiol 2008; 74: 5862 5865 [CrossRef] [PubMed]
    [Google Scholar]
  494. Liefting LW, Weir BS, Pennycook SR, Clover GRG. 'Candidatus Liberibacter solanacearum', associated with plants in the family Solanaceae. Int J Syst Evol Microbiol 2009; 59: 2274 2276 [CrossRef] [PubMed]
    [Google Scholar]
  495. Fettweis JM, Serrano MG, Huang B, Brooks JP, Glascock AL et al. An emerging mycoplasma associated with trichomoniasis, vaginal infection and disease. PLoS One 2014; 9: e110943 [CrossRef] [PubMed]
    [Google Scholar]
  496. Kougias PG, Campanaro S, Treu L, Zhu X, Angelidaki I. A novel archaeal species belonging to Methanoculleus genus identified via de novo assembly and metagenomic binning process in biogas reactors. Anaerobe 2017; 46: 23 32 [CrossRef] [PubMed]
    [Google Scholar]
  497. Borrel G, Harris HMB, Parisot N, Gaci N, Tottey W et al. Genome Sequence of "Candidatus Methanomassiliicoccus intestinalis" Issoire-Mx1, a third Thermoplasmatales-related methanogenic archaeon from human feces. Genome Announc 2013; 1: e00453 13 [CrossRef] [PubMed]
    [Google Scholar]
  498. Angle JC, Morin TH, Solden LM, Narrowe AB, Smith GJ et al. Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions. Nat Commun 2017; 8: 1567 [CrossRef] [PubMed]
    [Google Scholar]
  499. O'Brien CR, Malik R, Globan M, Reppas G, McCowan C et al. Feline leprosy due to Candidatus 'Mycobacterium lepraefelis': Further clinical and molecular characterisation of eight previously reported cases and an additional 30 cases. J Feline Med Surg 2017; 19: 919 932 [CrossRef] [PubMed]
    [Google Scholar]
  500. O'Brien CR, Malik R, Globan M, Reppas G, McCowan C et al. Feline leprosy due to Candidatus 'Mycobacterium tarwinense': Further clinical and molecular characterisation of 15 previously reported cases and an additional 27 cases. J Feline Med Surg 2017; 19: 498 512 [CrossRef] [PubMed]
    [Google Scholar]
  501. Barker EN, Helps CR, Neimark H, Peters IR, Peters W et al. A novel haemoplasma species identified in archived primate blood smears. Vet Microbiol 2011; 149: 478 481 [CrossRef] [PubMed]
    [Google Scholar]
  502. Neulinger SC, Gärtner A, Järnegren J, Ludvigsen M, Lochte K et al. Tissue-associated "Candidatus Mycoplasma corallicola" and filamentous bacteria on the cold-water coral Lophelia pertusa (Scleractinia). Appl Environ Microbiol 2009; 75: 1437 1444 [CrossRef]
    [Google Scholar]
  503. Watanabe Y, Fujihara M, Obara H, Matsubara K, Yamauchi K et al. Novel hemoplasma species detected in free-ranging sika deer (Cervus nippon). J Vet Med Sci 2010; 72: 1527 1530 [CrossRef] [PubMed]
    [Google Scholar]
  504. Millán J, López-Roig M, Delicado V, Serra-Cobo J, Esperón F. Widespread infection with hemotropic mycoplasmas in bats in Spain, including a hemoplasma closely related to "Candidatus Mycoplasma hemohominis". Comp Immunol Microbiol Infect Dis 2015; 39: 9 12 [CrossRef] [PubMed]
    [Google Scholar]
  505. Maggi RG, Mascarelli PE, Balakrishnan N, Rohde CM, Kelly CM et al. "Candidatus Mycoplasma haemomacaque" and Bartonella quintana bacteremia in cynomolgus monkeys. J Clin Microbiol 2013; 51: 1408 1411 [CrossRef] [PubMed]
    [Google Scholar]
  506. Sykes JE, Ball LM, Bailiff NL, Fry MM. 'Candidatus Mycoplasma haematoparvum', a novel small haemotropic Mycoplasma from a dog. Int J Syst Evol Microbiol 2005; 55: 27 30 [CrossRef] [PubMed]
    [Google Scholar]
  507. Hornok S, Meli ML, Erdos A, Hajtós I, Lutz H et al. Molecular characterization of two different strains of haemotropic mycoplasmas from a sheep flock with fatal haemolytic anaemia and concomitant Anaplasma ovis infection. Vet Microbiol 2009; 136: 372 377 [CrossRef] [PubMed]
    [Google Scholar]
  508. Volokhov DV, Norris T, Rios C, Davidson MK, Messick JB et al. Novel hemotrophic mycoplasma identified in naturally infected California sea lions (Zalophus californianus). Vet Microbiol 2011; 149: 262 268 [CrossRef]
    [Google Scholar]
  509. Neimark H, Barnaud A, Gounon P, Michel J-C, Contamin H. The putative haemobartonella that influences Plasmodium falciparum parasitaemia in squirrel monkeys is a haemotrophic mycoplasma. Microbes Infect 2002; 4: 693 698 [CrossRef] [PubMed]
    [Google Scholar]
  510. Neimark H, Mitchelmore D, Leach RH. An approach to characterizing uncultivated prokaryotes: the Grey Lung agent and proposal of a Candidatus taxon for the organism, 'Candidatus Mycoplasma ravipulmonis'. Int J Syst Bacteriol 1998; 48: 389 394 [CrossRef]
    [Google Scholar]
  511. Willi B, Boretti FS, Baumgartner C, Tasker S, Wenger B et al. Prevalence, risk factor analysis, and follow-up of infections caused by three feline hemoplasma species in cats in Switzerland. J Clin Microbiol 2006; 44: 961 969 [CrossRef]
    [Google Scholar]
  512. Blainey PC, Mosier AC, Potanina A, Francis CA, Quake SR. Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis. PLoS One 2011; 6: e16626 [CrossRef] [PubMed]
    [Google Scholar]
  513. Bayer B, Vojvoda J, Reinthaler T, Reyes C, Pinto M et al. Nitrosopumilus adriaticus sp. nov. and Nitrosopumilus piranensis sp. nov., two ammonia-oxidizing archaea from the Adriatic Sea and members of the class Nitrososphaeria . Int J Syst Evol Microbiol 2019; 69: 1892 1902
    [Google Scholar]
  514. Bayer B, Vojvoda J, Alves RJE, Elisabeth NH et al. Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differentiation. ISME J 2016; 10: 1051 1063
    [Google Scholar]
  515. Park S-J, Kim J-G, Jung M-Y, Kim S-J, Cha I-T et al. Draft genome sequence of an ammonia-oxidizing archaeon, "Candidatus Nitrosopumilus koreensis" AR1, from marine sediment. J Bacteriol 2012; 194: 6940 6941 [CrossRef] [PubMed]
    [Google Scholar]
  516. Mosier AC, Allen EE, Kim M, Ferriera S, Francis CA. Genome sequence of "Candidatus Nitrosopumilus salaria" BD31, an ammonia-oxidizing archaeon from the San Francisco Bay estuary. J Bacteriol 2012; 194: 2121 2122 [CrossRef] [PubMed]
    [Google Scholar]
  517. Park SJ, Kim JG, Jung MY, Kim SJ, Cha IT et al. Draft genome sequence of an ammonia-oxidizing archaeon, "Candidatus Nitrosopumilus sediminis" AR2, from Svalbard in the Arctic circle. J Bacteriol 2012; 194: 6948 6949 [CrossRef]
    [Google Scholar]
  518. Zhalnina KV, Dias R, Leonard MT, Dorr de Quadros P, Camargo FAO et al. Genome sequence of Candidatus Nitrososphaera evergladensis from group I.1b enriched from Everglades soil reveals novel genomic features of the ammonia-oxidizing archaea. PLoS One 2014; 9: e101648 [CrossRef] [PubMed]
    [Google Scholar]
  519. Hatzenpichler R, Lebedeva EV, Spieck E, Stoecker K, Richter A et al. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc Natl Acad Sci USA 2008; 105: 2134 2139 [CrossRef] [PubMed]
    [Google Scholar]
  520. Lebedeva EV, Alawi M, Maixner F, Jozsa P-G, Daims H et al. Physiological and phylogenetic characterization of a novel lithoautotrophic nitrite-oxidizing bacterium, 'Candidatus Nitrospira bockiana'. Int J Syst Evol Microbiol 2008; 58: 242 250 [CrossRef] [PubMed]
    [Google Scholar]
  521. Spieck E, Hartwig C, McCormack I, Maixner F, Wagner M et al. Selective enrichment and molecular characterization of a previously uncultured Nitrospira-like bacterium from activated sludge. Environ Microbiol 2006; 8: 405 415 [CrossRef]
    [Google Scholar]
  522. Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C et al. Complete nitrification by Nitrospira bacteria. Nature 2015; 528: 504 509 [CrossRef] [PubMed]
    [Google Scholar]
  523. van Kessel MAHJ, Speth DR, Albertsen M, Nielsen PH, Op den Camp HJM et al. Complete nitrification by a single microorganism. Nature 2015; 528: 555 559 [CrossRef] [PubMed]
    [Google Scholar]
  524. Kostygov AY, Dobáková E, Grybchuk-Ieremenko A, Váhala D, Maslov DA et al. Novel trypanosomatid-bacterium association: evolution of endosymbiosis in action. mBio 2016; 7: e01985 15 [CrossRef] [PubMed]
    [Google Scholar]
  525. Bansal R, Michel AP, Sabree ZL. The crypt-dwelling primary bacterial symbiont of the polyphagous pentatomid pest Halyomorpha halys (Hemiptera: Pentatomidae). Environ Entomol 2014; 43: 617 625 [CrossRef] [PubMed]
    [Google Scholar]
  526. Otero-Bravo A, Goffredi S, Sabree ZL. Cladogenesis and genomic streamlining in extracellular endosymbionts of tropical stink bugs. Genome Biol Evol 2018; 10: 680 693 [CrossRef]
    [Google Scholar]
  527. Giblin-Davis RM, Nong G, Preston JF, Williams DS, Center BJ et al. 'Candidatus Pasteuria aldrichii', an obligate endoparasite of the bacterivorous nematode Bursilla . Int J Syst Evol Microbiol 2011; 61: 2073 2080 [CrossRef] [PubMed]
    [Google Scholar]
  528. Giblin-Davis RM, Williams DS, Bekal S, Dickson DW, Brito JA et al. 'Candidatus Pasteuria usgae' sp. nov., an obligate endoparasite of the phytoparasitic nematode Belonolaimus longicaudatus . Int J Syst Evol Microbiol 2003; 53: 197 200 [CrossRef] [PubMed]
    [Google Scholar]
  529. Cai L, Zhou G, Tian RM, Tong H, Zhang W et al. Metagenomic analysis reveals a green sulfur bacterium as a potential coral symbiont. Sci Rep 2017; 7: 9320 [CrossRef] [PubMed]
    [Google Scholar]
  530. Jourda C, Santini S, Rocher C, Le Bivic A, Claverie J-M. Draft genome sequence of an alphaproteobacterium associated with the Mediterranean sponge Oscarella lobularis . Genome Announc 2015; 3: e00977 15 [CrossRef] [PubMed]
    [Google Scholar]
  531. Jiang J, Blair PJ, Felices V, Moron C, Cespedes M et al. Phylogenetic analysis of a novel molecular isolate of spotted fever group rickettsiae from northern Peru: Candidatus Rickettsia andeanae. Ann N Y Acad Sci 2005; 1063: 337 342 [CrossRef] [PubMed]
    [Google Scholar]
  532. Anstead CA, Chilton NB. A novel Rickettsia species detected in vole ticks (Ixodes angustus) from Western Canada. Appl Environ Microbiol 2013; 79: 7583 7589 [CrossRef] [PubMed]
    [Google Scholar]
  533. Owen H, Clark P, Stenos J, Robertson I, Fenwick S. Potentially pathogenic spotted fever group rickettsiae present in Western Australia. Aust J Rural Health 2006; 14: 284 285 [CrossRef]
    [Google Scholar]
  534. Mura A, Masala G, Tola S, Satta G, Fois F et al. First direct detection of rickettsial pathogens and a new rickettsia, 'Candidatus Rickettsia barbariae', in ticks from Sardinia, Italy. Clin Microbiol Infect 2008; 14: 1028 1033 [CrossRef] [PubMed]
    [Google Scholar]
  535. Miranda J, Portillo A, Oteo JA, Mattar S. Rickettsia sp. strain colombianensi (Rickettsiales: Rickettsiaceae): a new proposed Rickettsia detected in Amblyomma dissimile (Acari: Ixodidae) from iguanas and free-living larvae ticks from vegetation. J Med Entomol 2012; 49: 960 965 [CrossRef] [PubMed]
    [Google Scholar]
  536. Quintero Véles JC, Paternina LE, Uribe AY, Muskus C, Hidalgo M et al. Eco-epidemiological analysis of rickettsial seropositivity in rural areas of Colombia: a multilevel approach. PLoS Negl Trop Dis 2017; 11: e0005892 [CrossRef] [PubMed]
    [Google Scholar]
  537. Brumpt E. Rickettsia intracellulaire stomacale ( Rickettsia culicis n. sp.) de Culex fatigans . Ann Parasitol Hum Comp 1938; 16: 153 158 [CrossRef]
    [Google Scholar]
  538. Mediannikov O, Paddock CD, Parola P. Other rickettsiae of possible or undetermined pathogenicity. In Raoult D, Parola P. (editors) Rickettsial Diseases New York City: Informa Healthcare; 2007 pp 163 177
    [Google Scholar]
  539. Matsumoto K, Parola P, Rolain JM, Jeffery K, Raoult D. Detection of "Rickettsia sp. strain Uilenbergi" and "Rickettsia sp. strain Davousti" in Amblyomma tholloni ticks from elephants in Africa. BMC Microbiol 2007; 7: 74 [CrossRef]
    [Google Scholar]
  540. Yang J, Tian Z, Liu Z, Niu Q, Han R et al. Novel spotted fever group rickettsiae in Haemaphysalis qinghaiensis ticks from Gansu, Northwest China. Parasit Vectors 2016; 9: 146 [CrossRef] [PubMed]
    [Google Scholar]
  541. Keysary A, Eremeeva ME, Leitner M, Din AB, Wikswo ME et al. Spotted fever group rickettsiae in ticks collected from wild animals in Israel. Am J Trop Med Hyg 2011; 85: 919 923 [CrossRef] [PubMed]
    [Google Scholar]
  542. Jiang J, An H, Lee JS, O'Guinn ML, Kim H-C et al. Molecular characterization of Haemaphysalis longicornis-borne rickettsiae, Republic of Korea and China. Ticks Tick Borne Dis 2018; 9: 1606 1613 [CrossRef] [PubMed]
    [Google Scholar]
  543. Zou Y, Wang Q, Fu Z, Liu P, Jin H et al. Detection of spotted fever group Rickettsia in Haemaphysalis longicornis from Hebei Province, China. J Parasitol 2011; 97: 960 962 [CrossRef] [PubMed]
    [Google Scholar]
  544. Hornok S, Meli ML, Perreten A, Farkas R, Willi B et al. Molecular investigation of hard ticks (Acari: Ixodidae) and fleas (Siphonaptera: Pulicidae) as potential vectors of rickettsial and mycoplasmal agents. Vet Microbiol 2010; 140: 98 104 [CrossRef] [PubMed]
    [Google Scholar]
  545. Anstead CA, Chilton NB. Detection of a novel Rickettsia (Alphaproteobacteria: Rickettsiales) in rotund ticks (Ixodes kingi) from Saskatchewan, Canada. Ticks Tick Borne Dis 2013; 4: 202 206 [CrossRef] [PubMed]
    [Google Scholar]
  546. Liu H, Li Q, Zhang X, Li Z, Wang Z et al. Characterization of rickettsiae in ticks in northeastern China. Parasit Vectors 2016; 9: 498 [CrossRef] [PubMed]
    [Google Scholar]
  547. Rolain JM, Mathai E, Lepidi H, Somashekar HR, Mathew LG et al. "Candidatus Rickettsia kellyi," India. Emerg Infect Dis 2006; 12: 483 485 [CrossRef] [PubMed]
    [Google Scholar]
  548. Sréter-Lancz Z, Széll Z, Kovács G, Egyed L, Márialigeti K et al. Rickettsiae of the spotted-fever group in ixodid ticks from Hungary: identification of a new genotype ('Candidatus Rickettsia kotlanii'). Ann Trop Med Parasitol 2006; 100: 229 236 [CrossRef] [PubMed]
    [Google Scholar]
  549. Merhej V, Raoult D. Rickettsial evolution in the light of comparative genomics. Biol Rev Camb Philos Soc 2011; 86: 379 405 [CrossRef] [PubMed]
    [Google Scholar]
  550. Eremeeva ME, Weiner LM, Zambrano ML, Dasch GA, Hu R et al. Detection and characterization of a novel spotted fever group Rickettsia genotype in Haemaphysalis leporispalustris from California, USA. Ticks Tick Borne Dis 2018; 9: 814 818 [CrossRef] [PubMed]
    [Google Scholar]
  551. Huang Y, Zhao L, Zhang Z, Liu M, Xue Z et al. Detection of a novel Rickettsia from Leptotrombidium scutellare mites (Acari: Trombiculidae) from Shandong of China. J Med Entomol 2017; 54: 544 549 [CrossRef] [PubMed]
    [Google Scholar]
  552. Mediannikov O, Diatta G, Zolia Y, Balde MC, Kohar H et al. Tick-borne rickettsiae in Guinea and Liberia. Ticks Tick Borne Dis 2012; 3: 43 48 [CrossRef] [PubMed]
    [Google Scholar]
  553. Hajduskova E, Literak I, Papousek I, Costa FB, Novakova M et al. 'Candidatus Rickettsia mendelii', a novel basal group rickettsia detected in Ixodes ricinus ticks in the Czech Republic. Ticks Tick Borne Dis 2016; 7: 482 486 [CrossRef] [PubMed]
    [Google Scholar]
  554. Kimita G, Mutai B, Nyanjom SG, Wamunyokoli F, Waitumbi J. Phylogenetic variants of Rickettsia africae, and incidental identification of "Candidatus Rickettsia moyalensis" in Kenya. PLoS Negl Trop Dis 2016; 10: e0004788 [CrossRef] [PubMed]
    [Google Scholar]
  555. Moreira-Soto D, Moreira-Soto A, Corrales-Aguilar E, Calderón-Arguedas Ó, Troyo A. 'Candidatus Rickettsia nicoyana': a novel Rickettsia species isolated from Ornithodoros knoxjonesi in Costa Rica. Ticks Tick Borne Dis 2017; 8: 532 536 [CrossRef] [PubMed]
    [Google Scholar]
  556. Mediannikov O, Sidelnikov Y, Ivanov L, Fournier P-E, Tarasevich I et al. Far eastern tick-borne rickettsiosis: identification of two new cases and tick vector. Ann N Y Acad Sci 2006; 1078: 80 88 [CrossRef] [PubMed]
    [Google Scholar]
  557. Portillo A, Ibarra V, Santibáñez S, Pérez-Martínez L, Blanco JR et al. Genetic characterisation of ompA, ompB and gltA genes from Candidatus Rickettsia rioja. Clin Microbiol Infect 2009; 15: 307 308 [CrossRef] [PubMed]
    [Google Scholar]
  558. Eremeeva ME, Stromdahl EY. Short report: new spotted fever group Rickettsia in a Rhipicephalus turanicus tick removed from a child in eastern Sicily, Italy. Am J Trop Med Hyg 2011; 84: 99 101 [CrossRef] [PubMed]
    [Google Scholar]
  559. Shpynov S, Fournier PE, Rudakov N, Raoult D. "Candidatus Rickettsia tarasevichiae" in Ixodes persulcatus ticks collected in Russia. Ann NY Acad Sci 2003; 990: 162 172 [CrossRef] [PubMed]
    [Google Scholar]
  560. Izzard L, Graves S, Cox E, Fenwick S, Unsworth N et al. Novel rickettsia in ticks, Tasmania, Australia. Emerg Infect Dis 2009; 15: 1654 1656 [CrossRef] [PubMed]
    [Google Scholar]
  561. Wang Y, Liu Z, Yang J, Chen Z, Liu J et al. Rickettsia raoultii –like bacteria in Dermacentor spp. ticks, Tibet, China. Emerg Infect Dis 2012; 18: 1531 1533 [CrossRef]
    [Google Scholar]
  562. Igolkina YP, Rar VA, Yakimenko VV, Malkova MG, Tancev AK et al. Genetic variability of Rickettsia spp. in Ixodes persulcatus/Ixodes trianguliceps sympatric areas from Western Siberia, Russia: Identification of a new Candidatus Rickettsia species. Infect Genet Evol 2015; 34: 88 93 [CrossRef] [PubMed]
    [Google Scholar]
  563. Palomar AM, Portillo A, Santibáñez P, Santibáñez S, García-Álvarez L et al. Genetic characterization of Candidatus Rickettsia vini, a new rickettsia amplified in ticks from La Rioja, Spain. Ticks Tick Borne Dis 2012; 3: 319 321 [CrossRef] [PubMed]
    [Google Scholar]
  564. Tahir D, Socolovschi C, Marié J-L, Ganay G, Berenger J-M et al. New Rickettsia species in soft ticks Ornithodoros hasei collected from bats in French Guiana. Ticks Tick Borne Dis 2016; 7: 1089 1096 [CrossRef] [PubMed]
    [Google Scholar]
  565. Kleespies RG, Federici BA, Leclerque A. Ultrastructural characterization and multilocus sequence analysis (MLSA) of 'Candidatus Rickettsiella isopodorum', a new lineage of intracellular bacteria infecting woodlice (Crustacea: Isopoda). Syst Appl Microbiol 2014; 37: 351 359 [CrossRef] [PubMed]
    [Google Scholar]
  566. Tsuchida T, Koga R, Fujiwara A, Fukatsu T. Phenotypic effect of "Candidatus Rickettsiella viridis," a facultative symbiont of the pea aphid (Acyrthosiphon pisum), and its interaction with a coexisting symbiont. Appl Environ Microbiol 2014; 80: 525 533 [CrossRef] [PubMed]
    [Google Scholar]
  567. Qin Q-S, Feng D-S, Liu P-F, He Q, Li X et al. Metagenomic characterization of Candidatus Smithella cisternae strain M82_1, a syntrophic alkane-degrading bacteria, enriched from the Shengli oil field. Microbes Environ 2017; 32: 234 243 [CrossRef] [PubMed]
    [Google Scholar]
  568. Chrudimský T, Husník F, Nováková E, Hypša V. Candidatus Sodalis melophagi sp. nov.: phylogenetically independent comparative model to the tsetse fly symbiont Sodalis glossinidius . PLoS One 2012; 7: e40354 [CrossRef] [PubMed]
    [Google Scholar]
  569. Oakeson KF, Gil R, Clayton AL, Dunn DM, von Niederhausern AC et al. Genome degeneration and adaptation in a nascent stage of symbiosis. Genome Biol Evol 2014; 6: 76 93 [CrossRef]
    [Google Scholar]
  570. Kaltenpoth M, Goettler W, Dale C, Stubblefield JW, Herzner G et al. 'Candidatus Streptomyces philanthi', an endosymbiotic streptomycete in the antennae of Philanthus digger wasps. Int J Syst Evol Microbiol 2006; 56: 1403 1411 [CrossRef] [PubMed]
    [Google Scholar]
  571. Buttet GF, Murray AM, Goris T, Burion M, Jin B et al. Coexistence of two distinct Sulfurospirillum populations respiring tetrachloroethene—genomic and kinetic considerations. FEMS Microbiol Ecol 2018; 94: fiy018 [CrossRef]
    [Google Scholar]
  572. Usher KM, Fromont J, Sutton DC, Toze S. The biogeography and phylogeny of unicellular cyanobacterial symbionts in sponges from Australia and the Mediterranean. Microb Ecol 2004; 48: 167 177 [CrossRef]
    [Google Scholar]
  573. Peduzzi S, Storelli N, Welsh A, Peduzzi R, Hahn D et al. Candidatus "Thiodictyon syntrophicum", sp. nov., a new purple sulfur bacterium isolated from the chemocline of Lake Cadagno forming aggregates and specific associations with Desulfocapsa sp. Syst Appl Microbiol 2012; 35: 139 144 [CrossRef] [PubMed]
    [Google Scholar]
  574. Ohkuma M, Noda S, Hattori S, Iida T, Yuki M et al. Acetogenesis from H2 plus CO2 and nitrogen fixation by an endosymbiotic spirochete of a termite-gut celluolytic protist. Proc Natl Acad Sci USA 2015; 112: 10224 10230 [CrossRef] [PubMed]
    [Google Scholar]
  575. Ramírez-Puebla ST, Servín-Garcidueñas LE, Ormeño-Orrillo E, Vera-Ponce de León A, Rosenblueth M et al. Species in Wolbachia? Proposal for the designation of 'Candidatus Wolbachia bourtzisii', 'Candidatus Wolbachia onchocercicola', 'Candidatus Wolbachia blaxteri', 'Candidatus Wolbachia brugii', 'Candidatus Wolbachia taylori', 'Candidatus Wolbachia collembolicola' and 'Candidatus Wolbachia multihospitum' for the different species within Wolbachia supergroups. Syst Appl Microbiol 2015; 38: 390 399 [CrossRef] [PubMed]
    [Google Scholar]
  576. Bohr URM, Segal I, Primus A, Wex T, Hassan H et al. Detection of a putative novel Wolinella species in patients with squamous cell carcinoma of the esophagus. Helicobacter 2003; 8: 608 612 [CrossRef] [PubMed]
    [Google Scholar]
  577. Oxley APA, Powell M, McKay DB. Species of the family Helicobacteraceae detected in an Australian sea lion (Neophoca cinerea) with chronic gastritis. J Clin Microbiol 2004; 42: 3505 3512 [CrossRef] [PubMed]
    [Google Scholar]
  578. Schrallhammer M, Schweikert M, Vallesi A, Verni F, Petroni G. Detection of a novel subspecies of Francisella noatunensis as endosymbiont of the ciliate Euplotes raikovi . Microb Ecol 2011; 61: 455 464 [CrossRef] [PubMed]
    [Google Scholar]
  579. Roberts R, Steenkamp ET, Pietersen G. Three novel lineages of 'Candidatus Liberibacter africanus' associated with native rutaceous hosts of Trioza erytreae in South Africa. Int J Syst Evol Microbiol 2015; 65: 723 731 [CrossRef]
    [Google Scholar]
  580. Harasawa R, Fujita H, Kadosaka T, Ando S, Rikihisa Y. Proposal for 'Candidatus Mycoplasma haemomuris subsp. musculi' in mice, and 'Candidatus Mycoplasma haemomuris subsp. ratti' in rats. Int J Syst Evol Microbiol 2015; 65: 734 737 [CrossRef] [PubMed]
    [Google Scholar]
  581. Sabaneyeva E, Castelli M, Szokoli F, Benken K, Lebedeva N et al. Host and symbiont intraspecific variability: the case of Paramecium calkinsi and “Candidatus Trichorickettsia mobilis”. Eur J Protistol 2018; 62: 79 94 [CrossRef]
    [Google Scholar]
  582. Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 2005; 437: 543 546 [CrossRef] [PubMed]
    [Google Scholar]
  583. Qin W, Heal KR, Ramdasi R, Kobelt JN, Martens-Habbena W et al. Nitrosopumilus maritimus gen. nov., sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum Thaumarchaeota . Int J Syst Evol Microbiol 2017; 67: 5067 5079 [CrossRef]
    [Google Scholar]
  584. Stieglmeier M, Klingl A, Alves RJE, Rittmann SK-MR, Melcher M et al. Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota . Int J Syst Evol Microbiol 2014; 64: 2738 2752 [CrossRef] [PubMed]
    [Google Scholar]
  585. Tourna M, Stieglmeier M, Spang A, Könneke M, Schintlmeister A et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci USA 2011; 108: 8420 8425 [CrossRef]
    [Google Scholar]
  586. Bryant DA, Costas AMG, Maresca JA, Chew AGM, Klatt CG et al. Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium. Science 2007; 317: 523 526 [CrossRef] [PubMed]
    [Google Scholar]
  587. Tank M, Bryant DA. Chloracidobacterium thermophilum gen. nov., sp. nov.: an anoxygenic microaerophilic chlorophotoheterotrophic acidobacterium. Int J Syst Evol Microbiol 2015; 65: 1426 1430 [CrossRef]
    [Google Scholar]
  588. Zheng H, Dietrich C, Radek R, Brune A. Endomicrobium proavitum, the first isolate of Endomicrobia class. nov. (phylum Elusimicrobia)--an ultramicrobacterium with an unusual cell cycle that fixes nitrogen with a Group IV nitrogenase. Environ Microbiol 2016; 18: 191 204 [CrossRef] [PubMed]
    [Google Scholar]
  589. Gebhart CJ, Barns SM, McOrist S, Lin GF, Lawson GH. Ileal symbiont Intracellularis, an obligate intracellular bacterium of porcine intestines showing a relationship to Desulfovibrio species. Int J Syst Bacteriol 1993; 43: 533 538 [CrossRef] [PubMed]
    [Google Scholar]
  590. McOrist S, Gebhart CJ, Boid R, Barns SM. Characterization of Lawsonia intracellularis gen. nov., sp. nov., the obligately intracellular bacterium of porcine proliferative enteropathy. Int J Syst Bacteriol 1995; 45: 820 825 [CrossRef] [PubMed]
    [Google Scholar]
  591. Fagen JR, Leonard MT, Coyle JF, McCullough CM, Davis-Richardson AG et al. Liberibacter crescens gen. nov., sp. nov., the first cultured member of the genus Liberibacter . Int J Syst Evol Microbiol 2014; 64: 2461 2466 [CrossRef] [PubMed]
    [Google Scholar]
  592. Bazylinski DA, Williams TJ, Lefèvre CT, Berg RJ, Zhang CL et al. Magnetococcus marinus gen. nov., sp. nov., a marine, magnetotactic bacterium that represents a novel lineage (Magnetococcaceae fam. nov., Magnetococcales ord. nov.) at the base of the Alphaproteobacteria . Int J Syst Evol Microbiol 2013; 63: 801 808 [CrossRef] [PubMed]
    [Google Scholar]
  593. Lefèvre CT, Viloria N, Schmidt ML, Pósfai M, Frankel RB et al. Novel magnetite-producing magnetotactic bacteria belonging to the Gammaproteobacteria . ISME J 2012; 6: 440 450 [CrossRef] [PubMed]
    [Google Scholar]
  594. Bazylinski DA, Williams TJ, Lefèvre CT, Trubitsyn D, Fang J et al. Magnetovibrio blakemorei gen. nov., sp. nov., a magnetotactic bacterium (Alphaproteobacteria: Rhodospirillaceae) isolated from a salt marsh. Int J Syst Evol Microbiol 2013; 63: 1824 1833