1887

Abstract

A novel haloalkaliphilic bacterium, designated G-116, was isolated from the decaying biomass of a laboratory culture of cyanobacterium species. Cells of strain G-116 were Gram-stain-negative, motile spirilla. Strain G-116 showed high halotolerance to 20 % (w/v) NaCl (optimum growth at 3.5–6.0 %, w/v) and obligately alkaliphilic growth within the pH range 7.3–10.4 (optimum growth at pH 8.7–8.9). The major fatty acids identified were C, summed feature 8 (C 7/C 6), summed feature 3 (C 7/C 6) and C cyclo 8. The polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified phospholipid, three unidentified amino lipids and five unidentified lipids. The predominant respiratory quinone was ubiquinone-8 (Q-8). The G+C content of the genomic DNA was 60.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the closest genus with a validly published name is a monotypic and strain G-116 clustered with GCWy1 with a 16S rRNA gene sequence similarity of 94.3 %. Based on the data obtained from phenotypic and chemotaxonomic studies and the phylogenetic analysis, the isolate is proposed to be a representative of a novel genus and a novel species, gen. nov., sp. nov. Together with they form a separate clade, for which a novel family, fam. nov., is proposed. In addition, fam. nov. and fam. nov. are proposed to encompass the genera and , and the genus , respectively. All three novel families are within the order of the class . The type strain of the type species, gen. nov., sp. nov. is G-116 (=VKM B-3134=KCTC 62956).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003781
2019-10-31
2019-11-14
Loading full text...

Full text loading...

References

  1. Otsuki A, Hanya T. Production of dissolved organic matter from dead green algal cells. I. aerobic microbial decomposition. Limnol Oceanogr 1972;17: 248– 257 [CrossRef]
    [Google Scholar]
  2. YuV B, Kevbrin VV. Trophic interactions of proteolytic bacteria Proteinivorax tanatarense in an alkaliphilic microbial community. Microbiology 2016;85: 481– 487
    [Google Scholar]
  3. Fallon RD, Brock TD. Decomposition of blue-green algal (cyanobacterial) blooms in lake mendota, Wisconsin. Appl Environ Microbiol 1979;37: 820– 830
    [Google Scholar]
  4. Xing P, Guo L, Tian W, Wu QL. Novel Clostridium populations involved in the anaerobic degradation of Microcystis blooms. ISME J 2011;5: 792– 800 [CrossRef]
    [Google Scholar]
  5. Graue J, Engelen B, Cypionka H. Degradation of cyanobacterial biomass in anoxic tidal-flat sediments: a microcosm study of metabolic processes and community changes. ISME J 2012;6: 660– 669 [CrossRef]
    [Google Scholar]
  6. Krieg NR, Padgett PJ. Phenotypic and physiological characterization methods In Rainey F, Oren A. (editors) Methods in Microbiology. Taxonomy of Prokaryotes38 Academic Press; 2011; pp 15– 60
    [Google Scholar]
  7. Boulygina ES, Kuznetsov BB, Marusina AI, Tourova TP, Kravchenko IK et al. The study of nucleotide sequences of nifH genes from some methanotrophic bacteria. Microbiology 2002;71: 425– 432 [CrossRef]
    [Google Scholar]
  8. Owen RJ, Hill LR, Lapage SP. Determination of DNA base compositions from melting profiles in dilute buffers. Biopolymers 1969;7: 503– 516 [CrossRef]
    [Google Scholar]
  9. Lane DJ. 16S/23S rRNA sequencing In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp 115– 175
    [Google Scholar]
  10. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32: 1792– 1797 [CrossRef]
    [Google Scholar]
  11. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017;14: 587 589 [CrossRef]
    [Google Scholar]
  12. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015;32: 268– 274 [CrossRef]
    [Google Scholar]
  13. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018;35: 518– 522 [CrossRef]
    [Google Scholar]
  14. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33: 1870– 1874 [CrossRef]
    [Google Scholar]
  15. Shahinpei A, Amoozegar MA, Fazeli SAS, Schumann P, Ventosa A et al. Salinispirillum marinum gen. nov., sp. nov., a haloalkaliphilic bacterium in the family 'Saccharospirillaceae'. Int J Syst Evol Microbiol 2014;64: 3610– 3615 [CrossRef]
    [Google Scholar]
  16. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017;11: 2399– 2406 [CrossRef]
    [Google Scholar]
  17. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68: 461– 466 [CrossRef]
    [Google Scholar]
  18. Wilson K. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol 2001;56: 2.4.1– 2.4.2 [CrossRef]
    [Google Scholar]
  19. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30: 2114– 2120 [CrossRef]
    [Google Scholar]
  20. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19: 455– 477 [CrossRef]
    [Google Scholar]
  21. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Ciufo S et al. Prokaryotic Genome Annotation Pipeline. the Ncbi Handbook, 2nd ed. Bethesda, MD: NCBI; 2013
    [Google Scholar]
  22. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018;36: 996 1004 [CrossRef]
    [Google Scholar]
  23. Pantiukh K, Grouzdev D. POCP-Matrix calculation for a number of genomes. Fig share 2017 10.6084/m9.figshare.5602957.v1
    [Google Scholar]
  24. Grouzdev DS, Rysina MS, Bryantseva IA, Gorlenko VM, Gaisin VA. Draft genome sequences of 'Candidatus Chloroploca asiatica' and 'Candidatus Viridilinea mediisalina', candidate representatives of the Chloroflexales order: phylogenetic and taxonomic implications. Stand Genomic Sci 2018;13: 24 [CrossRef]
    [Google Scholar]
  25. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014;196: 2210– 2215 [CrossRef]
    [Google Scholar]
  26. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: DE: MIDI Inc; 1990
    [Google Scholar]
  27. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2: 233– 241 [CrossRef]
    [Google Scholar]
  28. Garrity GM, Bell JA, Lilburn T. Order VIII. Oceanospirillales ord. nov In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology2B, 2nd edn. New York: Springer; 2005; pp 270– 323
    [Google Scholar]
  29. Labrenz M, Lawson PA, Tindall BJ, Collins MD, Hirsch P et al. Saccharospirillum Impatiens gen. nov., sp. nov., a novel gamma-proteobacterium isolated from hypersaline Ekho lake (East Antarctica). Int J Syst Evol Microbiol 2003;53: 653– 660 [CrossRef]
    [Google Scholar]
  30. Romanenko LA, Schumann P, Rohde M, Mikhailov VV, Stackebrandt E et al. Reinekea marinisedimentorum gen. nov., sp. nov., a novel gammaproteobacterium from marine coastal sediments. Int J Syst Evol Microbiol 2004;54: 669– 673 [CrossRef]
    [Google Scholar]
  31. Chen YG, Cui XL, Li QY, Wang YX, Tang SK et al. Saccharospirillum salsuginis sp. nov., a gammaproteobacterium from a subterranean brine. Int J Syst Evol Microbiol 2009;59: 1382– 1386 [CrossRef]
    [Google Scholar]
  32. Choi A, Oh HM, Cho JC. Saccharospirillum aestuarii sp. nov., isolated from tidal flat sediment, and an emended description of the genus Saccharospirillum. Int J Syst Evol Microbiol 2011;61: 487– 492 [CrossRef]
    [Google Scholar]
  33. Fidalgo C, Rocha J, Proença DN, Morais PV, Alves A et al. Saccharospirillum correiae sp. nov., an endophytic bacterium isolated from the halophyte Halimione portulacoides. Int J Syst Evol Microbiol 2017;67: 2026– 2030 [CrossRef]
    [Google Scholar]
  34. Zhang W, Yuan Y, Su D, Ding L, Yan X et al. Saccharospirillum mangrovi sp. nov., a bacterium isolated from mangrove sediment. Int J Syst Evol Microbiol 2018;68: 2813– 2818 [CrossRef]
    [Google Scholar]
  35. Pinhassi J, Pujalte MJ, Macián MC, Lekunberri I, González JM et al. Reinekea blandensis sp. nov., a marine, genome-sequenced gammaproteobacterium. Int J Syst Evol Microbiol 2007;57: 2370– 2375 [CrossRef]
    [Google Scholar]
  36. Choi A, Cho JC. Reinekea aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2010;60: 2813– 2817 [CrossRef]
    [Google Scholar]
  37. Kang H, Kim H, Joung Y, Joh K, nov R. Reinekea marina sp. nov., isolated from seawater, and emended description of the genus Reinekea. Int J Syst Evol Microbiol 2016;66: 360– 364 [CrossRef]
    [Google Scholar]
  38. Rosselló-Mora R, Amann R. The species concept for prokaryotes. FEMS Microbiol Rev 2001;25: 39– 67 [CrossRef]
    [Google Scholar]
  39. Chung EJ, Park JA, Jeon CO, Chung YR. Gynuella sunshinyii gen. nov., sp. nov., an antifungal rhizobacterium isolated from a halophyte, Carex scabrifolia Steud. Int J Syst Evol Microbiol 2015;65: 1038– 1043 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003781
Loading
/content/journal/ijsem/10.1099/ijsem.0.003781
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error