1887

Abstract

The genus , harbouring 293 species/subspecies, constitutes a phylogenetically incoherent group. In the absence of reliable means for grouping known species into distinct clades, restricting the placement of new species into this genus has proven difficult. To clarify the evolutionary relationships among species, 352 available genome sequences from the family were used to perform comprehensive phylogenomic and comparative genomic analyses. Four phylogenetic trees were reconstructed based on multiple datasets of proteins including 1172 core proteins, 87 proteins conserved within the phylum Firmicutes, GyrA–GyrB–RpoB–RpoC proteins, and UvrD–PolA proteins. All trees exhibited nearly identical branching of species and consistently displayed six novel monophyletic clades encompassing 5–23 species (denoted as the Simplex, Firmus, Jeotgali, Niacini, Fastidiosus and Alcalophilus clades), interspersed with other species. Species from these clades also generally grouped together in 16S rRNA gene trees. In parallel, our comparative genomic analyses of species led to the identification of 36 molecular markers comprising conserved signature indels in protein sequences that are specifically shared by the species from these six observed clades, thus reliably demarcating these clades based on multiple molecular synapomorphies. Based on the strong evidence from multiple lines of investigations supporting the existence of these six distinct ‘’ clades, we propose the transfer of species from these clades into six novel genera viz. gen. nov., gen. nov., gen. nov., gen. nov., gen. nov. and gen. nov. These results represent an important step towards clarifying the phylogeny/taxonomy of the genus .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003775
2019-10-16
2019-11-18
Loading full text...

Full text loading...

References

  1. Logan NA, De Vos P. Genus Bacillus Cohn 1872 In De Vos P, Garrity M, Jones D, Krieg R, Ludwig W. (editors) Bergey's Manual of Systematic Bacteriology New York: Springer; 2009; pp 21– 128
    [Google Scholar]
  2. Logan NA. Bacillus and relatives in foodborne illness. J Appl Microbiol 2012;112: 417– 429 [CrossRef]
    [Google Scholar]
  3. Koehler TM. Bacillus anthracis physiology and genetics. Mol Aspects Med 2009;30: 386– 396 [CrossRef]
    [Google Scholar]
  4. Pignatelli M, Moya A, Tamames J. EnvDB, a database for describing the environmental distribution of prokaryotic taxa. Environ Microbiol Rep 2009;1: 191– 197 [CrossRef]
    [Google Scholar]
  5. Bottone EJ. Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev 2010;23: 382– 398 [CrossRef]
    [Google Scholar]
  6. Sanchis V, Bourguet D. Bacillus thuringiensis In Lichtfouse E, Navarrete M, Debaeke P, Veronique S, Alberola C. (editors) Applications in Agriculture and Insect Resistance Management - A Review Netherlands: Springer; 2009; pp 243– 255
    [Google Scholar]
  7. Harwood CR. Bacillus subtilis and its relatives: molecular biological and industrial workhorses. Trends Biotechnol 1992;10: 247– 256 [CrossRef]
    [Google Scholar]
  8. Ravel J, Fraser CM. Genomics at the genus scale. Trends Microbiol 2005;13: 95– 97 [CrossRef]
    [Google Scholar]
  9. Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 2005;56: 845– 857 [CrossRef]
    [Google Scholar]
  10. Elshaghabee FMF, Rokana N, Gulhane RD, Sharma C, Panwar H. Bacillus As Potential Probiotics: Status, Concerns, and Future Perspectives. Front Microbiol 2017;8: 1490 [CrossRef]
    [Google Scholar]
  11. Nogi Y, Takami H, Horikoshi K. Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. Int J Syst Evol Microbiol 2005;55: 2309– 2315 [CrossRef]
    [Google Scholar]
  12. Dunlap CA. Taxonomy of registered Bacillus spp. strains used as plant pathogen antagonists. Biological Control 2019;134: 82– 86 [CrossRef]
    [Google Scholar]
  13. Zeigler DR. The genome sequence of Bacillus subtilis subsp. spizizenii W23: insights into speciation within the B. subtilis complex and into the history of B. subtilis genetics. Microbiology 2011;157: 2033– 2041 [CrossRef]
    [Google Scholar]
  14. Fritze D. Taxonomy of the genus Bacillus and related genera: the aerobic endospore-forming bacteria. Phytopathology 2004;94: 1245– 1248 [CrossRef]
    [Google Scholar]
  15. Ash C, Farrow JAE, Wallbanks S, Collins MD. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 1991;13: 202– 206 [CrossRef]
    [Google Scholar]
  16. Logan NA, Berge O, Bishop AH, Busse HJ, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009;59: 2114– 2121 [CrossRef]
    [Google Scholar]
  17. La Duc MT, Satomi M, Agata N, Venkateswaran K. gyrB as a phylogenetic discriminator for members of the Bacillus anthracis-cereus-thuringiensis group. J Microbiol Methods 2004;56: 383– 394 [CrossRef]
    [Google Scholar]
  18. Shida O, Takagi H, Kadowaki K, Komagata K. Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol 1996;46: 939– 946 [CrossRef]
    [Google Scholar]
  19. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA et al. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. th. Int J Syst Evol Microbiol 2001;51: 433– 446 [CrossRef]
    [Google Scholar]
  20. Ahmed I, Yokota A, Yamazoe A, Fujiwara T. Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysini bacillus fusiformis comb. nov. and Bacillus sphaericus to Lysini bacillus sphaericus comb. nov. Int J Syst Evol Microbiol 2007;57: 1117– 1125 [CrossRef]
    [Google Scholar]
  21. Wisotzkey JD, Jurtshuk P, Fox GE, Deinhard G, Poralla K. Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 1992;42: 263– 269 [CrossRef]
    [Google Scholar]
  22. Heyndrickx M, Lebbe L, Kersters K, Hoste B, De Wachter R et al. Proposal of Virgibacillus proomii sp. nov. and emended description of Virgibacillus pantothenticus (Proom and knight 1950) Heyndrickx et al. 1998. Int J Syst Bacteriol 1999;49: 1083– 1090 [CrossRef]
    [Google Scholar]
  23. Wainø M, Tindall BJ, Schumann P, Ingvorsen K. Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Sali bacillus salexigens comb. nov. Int J Syst Bacteriol 1999;49: 821– 831 [CrossRef]
    [Google Scholar]
  24. Fortina MG, Pukall R, Schumann P, Mora D, Parini C et al. Ureibacillus gen. nov., a new genus to accommodate Bacillus thermosphaericus (Andersson et al. 1995), emendation of Ureibacillus thermosphaericus and description of Ureibacillus terrenus sp. nov. Int J Syst Evol Microbiol 2001;51: 447– 455 [CrossRef]
    [Google Scholar]
  25. Yoon JH, Lee KC, Weiss N, Kho YH, Kang KH et al. Sporosarcina aquimarina sp. nov., a bacterium isolated from seawater in Korea, and transfer of Bacillus globisporus (Larkin and Stokes 1967), Bacillus psychrophilus (Nakamura 1984) and Bacillus pasteurii (Chester 1898) to the genus Sporosarcina as Sporosarcina globispora comb. nov., Sporosarcina psychrophila comb. nov. and Sporosarcina pasteurii comb. nov., and emended description of th. Int J Syst Evol Microbiol 2001;51: 1079– 1086 [CrossRef]
    [Google Scholar]
  26. Patel S, Gupta RS. Robust demarcation of fourteen different species groups within the genus Streptococcus based on genome-based phylogenies and molecular signatures. Infection, Genetics and Evolution 2018;66: 130– 151 [CrossRef]
    [Google Scholar]
  27. Rössler D, Ludwig W, Schleifer KH, Lin C, McGill TJ et al. Phylogenetic diversity in the genus Bacillus as seen by 16S rRNA sequencing studies. Syst Appl Microbiol 1991;14: 266– 269 [CrossRef]
    [Google Scholar]
  28. Rooney AP, Price NPJ, Ehrhardt C, Swezey JL, Bannan JD. Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov. Int J Syst Evol Microbiol 2009;59: 2429– 2436 [CrossRef]
    [Google Scholar]
  29. Achouak W, Normand P, Heulin T. Comparative phylogeny of rrs and nifH genes in the Bacillaceae. Int J Syst Bacteriol 1999;49: 961– 967 [CrossRef]
    [Google Scholar]
  30. Ki JS, Zhang W, Qian PY. Discovery of marine Bacillus species by 16S rRNA and rpoB comparisons and their usefulness for species identification. J Microbiol Methods 2009;77: 48– 57 [CrossRef]
    [Google Scholar]
  31. Wang LT, Lee FL, Tai CJ, Kasai H. Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA-DNA hybridization in the Bacillus subtilis group. Int J Syst Evol Microbiol 2007;57: 1846– 1850 [CrossRef]
    [Google Scholar]
  32. Mual P, Singh NK, Verma A, Schumann P, Krishnamurthi S et al. Reclassification of Bacillus isronensis Shivaji et al. 2009 as Solibacillus isronensis comb. nov. and emended description of genus Soli bacillus Krishnamurthi et al. 2009. Int J Syst Evol Microbiol 2016;66: 2113– 2120 [CrossRef]
    [Google Scholar]
  33. Verma A, Ojha AK, Pal Y, Kumari P, Schumann P et al. An investigation into the taxonomy of "Bacillus aminovorans" and its reclassification to the genus Domibacillus as Domibacillus aminovorans sp. nov. Syst Appl Microbiol 2017;40: 458– 467 [CrossRef]
    [Google Scholar]
  34. Alcaraz LD, Moreno-Hagelsieb G, Eguiarte LE, Souza V, Herrera-Estrella L et al. Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. BMC Genomics 2010;11: 332 [CrossRef]
    [Google Scholar]
  35. Klenk HP, Lapidus A, Chertkov O, Copeland A, Del Rio TG et al. Complete genome sequence of the thermophilic, hydrogen-oxidizing Bacillus tusciae type strain (T2) and reclassification in the new genus, Kyrpidia gen. nov. as Kyrpidia tusciae comb. nov. and emendation of the family Alicyclobacillaceae dA costa and rainey, 2010. Stand Genomic Sci 2011;5: 121– 134 [CrossRef]
    [Google Scholar]
  36. Gao B, Gupta RS. Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 2012;76: 66– 112 [CrossRef]
    [Google Scholar]
  37. Hu D, Zang Y, Mao Y, Gao B. Identification of Molecular Markers That Are Specific to the Class Thermoleophilia. Front Microbiol 2019;10: 1185 [CrossRef]
    [Google Scholar]
  38. Gupta RS. Identification of conserved indels that are useful for classification and evolutionary studies In Goodfellow M, Sutcliffe I, Chun J. (editors) Methods in Microbiology Oxford: Academic Press; 2014; pp 153– 182
    [Google Scholar]
  39. Adeolu M, Alnajar S, Naushad S, S Gupta R, Gupta S. Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016;66: 5575– 5599 [CrossRef]
    [Google Scholar]
  40. Bhandari V, Ahmod NZ, Shah HN, Gupta RS. Molecular signatures for Bacillus species: demarcation of the Bacillus subtilis and Bacillus cereus clades in molecular terms and proposal to limit the placement of new species into the genus Bacillus. Int J Syst Evol Microbiol 2013;63: 2712– 2726 [CrossRef]
    [Google Scholar]
  41. Parker CT, Tindall BJ, Garrity GM. International code of nomenclature of prokaryotes. Int J Syst Evol Microbiol 2019;69: S1– S111 [CrossRef]
    [Google Scholar]
  42. Parte AC. LPSN--list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42: D613– D616 [CrossRef]
    [Google Scholar]
  43. Dunlap CA, Kim SJ, Kwon S-W, Rooney AP. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and 'Bacillus oryzicola' are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int J Syst Evol Microbiol 2016;66: 1212– 1217 [CrossRef]
    [Google Scholar]
  44. Dunlap CA. Phylogenomic analysis shows that ‘Bacillus vanillea’ is a later heterotypic synonym of Bacillus siamensis. Int J Syst Evol Microbiol 2015;65: 3507– 3510 [CrossRef]
    [Google Scholar]
  45. Dunlap CA, Kim SJ, Kwon SW, Rooney AP. Phylogenomic analysis shows that Bacillus amyloliquefaciens subsp. plantarum is a later heterotypic synonym of Bacillus methylotrophicus. Int J Syst Evol Microbiol 2015;65: 2104– 2109 [CrossRef]
    [Google Scholar]
  46. Espariz M, Zuljan FA, Esteban L, Magni C. Taxonomic Identity Resolution of Highly Phylogenetically Related Strains and Selection of Phylogenetic Markers by Using Genome-Scale Methods: The Bacillus pumilus Group Case. PLoS One 2016;11: e0163098 [CrossRef]
    [Google Scholar]
  47. Liu Y, Lai Q, Shao Z. Genome analysis-based reclassification of Bacillus weihenstephanensis as a later heterotypic synonym of Bacillus mycoides. Int J Syst Evol Microbiol 2018;68: 106– 112 [CrossRef]
    [Google Scholar]
  48. Liu Y, Lai Q, Du J, Shao Z. Genetic diversity and population structure of the Bacillus cereus group bacteria from diverse marine environments. Sci Rep 2017;7: 689 [CrossRef]
    [Google Scholar]
  49. Wang Z, Wu M. A phylum-level bacterial phylogenetic marker database. Mol Biol Evol 2013;30: 1258– 1262 [CrossRef]
    [Google Scholar]
  50. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012;28: 3150– 3152 [CrossRef]
    [Google Scholar]
  51. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. Fast, scalable generation of high‐quality protein multiple sequence alignments using clustal omega. Mol Syst Biol 2011;7: 539 [CrossRef]
    [Google Scholar]
  52. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009;25: 1972– 1973 [CrossRef]
    [Google Scholar]
  53. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007;56: 564– 577 [CrossRef]
    [Google Scholar]
  54. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010;5: e9490 [CrossRef]
    [Google Scholar]
  55. Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 2001;18: 691– 699 [CrossRef]
    [Google Scholar]
  56. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30: 1312– 1313 [CrossRef]
    [Google Scholar]
  57. Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol 2008;25: 1307– 1320 [CrossRef]
    [Google Scholar]
  58. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010;59: 307– 321 [CrossRef]
    [Google Scholar]
  59. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30: 2725– 2729 [CrossRef]
    [Google Scholar]
  60. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM et al. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 2014;42: D633– D642 [CrossRef]
    [Google Scholar]
  61. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E et al. The SILVA and "All-species Living Tree Project (LTP)" taxonomic frameworks. Nucleic Acids Res 2014;42: D643– D648 [CrossRef]
    [Google Scholar]
  62. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ. Multiple sequence alignment with Clustal X. Trends Biochem Sci 1998;23: 403– 405 [CrossRef]
    [Google Scholar]
  63. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30: 2725– 2729 [CrossRef]
    [Google Scholar]
  64. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16: 111– 120 [CrossRef]
    [Google Scholar]
  65. Gupta RS. Impact of genomics on the understanding of microbial evolution and classification: the importance of darwin's views on classification. FEMS Microbiol Rev 2016;40: 520– 553 [CrossRef]
    [Google Scholar]
  66. Gupta RS. Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 1998;62: 1435– 1491
    [Google Scholar]
  67. Yáñez MA, Catalán V, Apráiz D, Figueras MJ, Martínez-Murcia AJ. Phylogenetic analysis of members of the genus Aeromonas based on gyrB gene sequences. Int J Syst Evol Microbiol 2003;53: 875– 883 [CrossRef]
    [Google Scholar]
  68. Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A et al. Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 2000;146: 2385– 2394 [CrossRef]
    [Google Scholar]
  69. Gupta RS, Mahmood S, Adeolu M. A phylogenomic and molecular signature based approach for characterization of the phylum spirochaetes and its major clades: proposal for a taxonomic revision of the phylum. Front Microbiol 2013;4: 217 [CrossRef]
    [Google Scholar]
  70. Gupta RS, Lorenzini E. Phylogeny and molecular signatures (conserved proteins and indels) that are specific for the bacteroidetes and chlorobi species. BMC Evol Biol 2007;7: 71 [CrossRef]
    [Google Scholar]
  71. Beccati A, Gerken J, Quast C, Yilmaz P, Glöckner FO. Silva tree viewer: interactive web browsing of the silva phylogenetic guide trees. BMC Bioinformatics 2017;18: 433 [CrossRef]
    [Google Scholar]
  72. Klenk HP, Göker M. En route to a genome-based classification of archaea and bacteria?. Syst Appl Microbiol 2010;33: 175– 182 [CrossRef]
    [Google Scholar]
  73. Dobritsa AP, Linardopoulou EV, Samadpour M. Transfer of 13 species of the genus Burkholderia to the genus Caballeronia and reclassification of Burkholderia jirisanensis as Paraburkholderia jirisanensis comb. nov. Int J Syst Evol Microbiol 2017;67: 3846– 3853 [CrossRef]
    [Google Scholar]
  74. Baldauf SL, Palmer JD. Animals and fungi are each other's closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci U S A 1993;90: 11558– 11562 [CrossRef]
    [Google Scholar]
  75. Rokas A, Holland PW. Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 2000;15: 454– 459 [CrossRef]
    [Google Scholar]
  76. Naushad HS, Lee B, Gupta RS. Conserved signature indels and signature proteins as novel tools for understanding microbial phylogeny and systematics: identification of molecular signatures that are specific for the phytopathogenic genera Dickeya, Pectobacterium and Brenneria. Int J Syst Evol Microbiol 2014;64: 366– 383 [CrossRef]
    [Google Scholar]
  77. Wang A, Ash GJ. Whole genome phylogeny of Bacillus by feature frequency profiles (FFP). Sci Rep 2015;5: [CrossRef]
    [Google Scholar]
  78. Liu Y, Du J, Lai Q, Zeng R, Ye D et al. Proposal of nine novel species of the Bacillus cereus group. Int J Syst Evol Microbiol 2017;67: 2499– 2508 [CrossRef]
    [Google Scholar]
  79. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018;36: 996– 1004 [CrossRef]
    [Google Scholar]
  80. Sawana A, Adeolu M, Gupta RS. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 2014;5: 429 [CrossRef]
    [Google Scholar]
  81. Dobritsa AP, Linardopoulou EV, Samadpour M. Transfer of 13 species of the genus Burkholderia to the genus Caballeronia and reclassification of Burkholderia jirisanensis as Paraburkholderia jirisanensis comb. nov. Int J Syst Evol Microbiol 2017;67: 3846– 3853 [CrossRef]
    [Google Scholar]
  82. Gupta RS, Lo B, Son J. Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera. Front Microbiol 2018;9: 67 [CrossRef]
    [Google Scholar]
  83. Gupta RS, Naushad S, Fabros R, Adeolu M. A phylogenomic reappraisal of family-level divisions within the class Halobacteria: proposal to divide the order Halobacteriales into the families Halobacteriaceae, Haloarculaceae fam. nov., and Halococcaceae fam. nov., and the order Haloferacales into the families, Haloferacaceae and Halorubraceae fam nov. Antonie van Leeuwenhoek 2016;109: 565– 587 [CrossRef]
    [Google Scholar]
  84. Ahmod NZ, Gupta RS, Shah HN. Identification of a Bacillus anthracis specific indel in the yeaC gene and development of a rapid pyrosequencing assay for distinguishing B. anthracis from the B. cereus group. J Microbiol Methods 2011;87: 278– 285 [CrossRef]
    [Google Scholar]
  85. Wong SY, Paschos A, Gupta RS, Schellhorn HE. Insertion/deletion-based approach for the detection of Escherichia coli O157:H7 in freshwater environments. Environ Sci Technol 2014;48: 11462– 11470 [CrossRef]
    [Google Scholar]
  86. Gao B, Gupta RS. Conserved indels in protein sequences that are characteristic of the phylum actinobacteria. Int J Syst Evol Microbiol 2005;55: 2401– 2412 [CrossRef]
    [Google Scholar]
  87. Khadka B, Gupta RS. Identification of a conserved 8 aa insert in the PIP5K protein in the Saccharomycetaceae family of fungi and the molecular dynamics simulations and structural analysis to investigate its potential functional role. Proteins 2017;85: 1454– 1467 [CrossRef]
    [Google Scholar]
  88. Singh B, Gupta RS. Conserved inserts in the HSP60 (GroEL) and Hsp70 (DnaK) proteins are essential for cellular growth. Mol Genet Genomics 2009;281: 361– 373 [CrossRef]
    [Google Scholar]
  89. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E et al. The SILVA and "All-species Living Tree Project (LTP)" taxonomic frameworks. Nucleic Acids Res 2014;42: D643– D648 [CrossRef]
    [Google Scholar]
  90. Chen YG, Hao DF, Chen QH, Zhang YQ, Liu JB et al. Bacillus hunanensis sp. nov., a slightly halophilic bacterium isolated from non-saline forest soil. Antonie Van Leeuwenhoek 2011;99: 481– 488 [CrossRef]
    [Google Scholar]
  91. Heyrman J, Logan NA, Rodríguez-Díaz M, Scheldeman P, Lebbe L et al. Study of mural painting isolates, leading to the transfer of 'Bacillus maroccanus' and 'Bacillus carotarum' to Bacillus simplex, emended description of Bacillus simplex, re-examination of the strains previously attributed to 'Bacillus macroides' and description of Bacillus muralis sp. nov. Int J Syst Evol Microbiol 2005;55: 119– 131 [CrossRef]
    [Google Scholar]
  92. Ma K, Yin Q, Chen L, Lai Q, Xu Y. Bacillus acanthi sp. nov., isolated from the rhizosphere soil of a mangrove plant Acanthus ilicifolius. Int J Syst Evol Microbiol 2018;68: 3047– 3051 [CrossRef]
    [Google Scholar]
  93. Yumoto I et al. Bacillus asahii sp. nov., a novel bacterium isolated from soil with the ability to deodorize the bad smell generated from short-chain fatty acids. Int J Syst Evol Microbiol 2004;54: 1997– 2001 [CrossRef]
    [Google Scholar]
  94. Kuisiene N, Raugalas J, Spröer C, Kroppenstedt RM, Chitavichius D. Bacillus butanolivorans sp. nov., a species with industrial application for the remediation of n-butanol. Int J Syst Evol Microbiol 2008;58: 505– 509 [CrossRef]
    [Google Scholar]
  95. Feng L, Liu D, Sun X, Wang G, Li M. Bacillus cavernae sp. nov. isolated from cave soil. Int J Syst Evol Microbiol 2016;66: 801– 806 [CrossRef]
    [Google Scholar]
  96. Zhang L, Wu GL, Wang Y, Dai J, Fang CX. Bacillus deserti sp. nov., a novel bacterium isolated from the desert of Xinjiang, China. Antonie Van Leeuwenhoek 2011;99: 221– 229 [CrossRef]
    [Google Scholar]
  97. Zhang YZ, Chen WF, Li M, Sui XH, Liu HC et al. Bacillus endoradicis sp. nov., an endophytic bacterium isolated from soybean root. Int J Syst Evol Microbiol 2012;62: 359– 363 [CrossRef]
    [Google Scholar]
  98. Kämpfer P, Busse HJ, McInroy JA, Glaeser SP. Bacillus gossypii sp. nov., isolated from the stem of Gossypium hirsutum. Int J Syst Evol Microbiol 2015;65: 4163– 4168 [CrossRef]
    [Google Scholar]
  99. Li J, Yang G, Wu M, Zhao Y, Zhou S. Bacillus huizhouensis sp. nov., isolated from a paddy field soil. Antonie Van Leeuwenhoek 2014;106: 357– 363 [CrossRef]
    [Google Scholar]
  100. Lim JM, Jeon CO, Lee JR, Park DJ, Kim CJ. Bacillus kribbensis sp. nov., isolated from a soil sample in Jeju, Korea. Int J Syst Evol Microbiol 2007;57: 2912– 2916 [CrossRef]
    [Google Scholar]
  101. Liu B, Liu GH, Zhu YJ, Wang JP, Che JM et al. Bacillus loiseleuriae sp. nov., isolated from rhizosphere soil from a loiseleuria plant. Int J Syst Evol Microbiol 2016;66: 2678– 2683 [CrossRef]
    [Google Scholar]
  102. Priest FG, Goodfellow M, Todd C. A numerical classification of the genus Bacillus. Microbiology 1988;134: 1847– 1882 [CrossRef]
    [Google Scholar]
  103. Bredemann G, Werner W. Botanische beschreibung häufinger am buttersäureabbau beteiligter sporenbildender bakterienspezies In Werner W. editor Botanische Beschreibung Häufinger Am Buttersäureabbau Beteiligter Sporenbildender Bakterienspezies Parasitenkunde, Infektionskrankheiten und Hygiene: Abteilung: Zentralblatt für Bakteriologie; 1933; pp 446– 475
    [Google Scholar]
  104. Wei X, Xin D, Xin Y, Zhang H, Wang T et al. Bacillus depressus sp. nov., isolated from soil of a sunflower field. Antonie van Leeuwenhoek 2016;109: 13– 20 [CrossRef]
    [Google Scholar]
  105. Hong SW, Park JM, Kim SJ, Chung KS. Bacillus eiseniae sp. nov., a swarming, moderately halotolerant bacterium isolated from the intestinal tract of an earthworm (Eisenia fetida L.). Int J Syst Evol Microbiol 2012;62: 2077– 2083 [CrossRef]
    [Google Scholar]
  106. Lin SY, Hameed A, Liu YC, Hsu YH, Lai WA et al. Bacillus formosensis sp. nov., isolated from pesticide wastewater. Int J Syst Evol Microbiol 2015;65: 3800– 3805 [CrossRef]
    [Google Scholar]
  107. Seiler H, Wenning M, Schmidt V, Scherer S. Bacillus gottheilii sp. nov., isolated from a pharmaceutical manufacturing site. Int J Syst Evol Microbiol 2013;63: 867– 872 [CrossRef]
    [Google Scholar]
  108. Vaishampayan P, Probst A, Krishnamurthi S, Ghosh S, Osman S et al. Bacillus horneckiae sp. nov., isolated from a spacecraft-assembly clean room. Int J Syst Evol Microbiol 2010;60: 1031– 1037 [CrossRef]
    [Google Scholar]
  109. Seiler H, Schmidt V, Wenning M, Scherer S. Bacillus kochii sp. nov., isolated from foods and a pharmaceuticals manufacturing site. Int J Syst Evol Microbiol 2012;62: 1092– 1097 [CrossRef]
    [Google Scholar]
  110. Zhang J, Wang J, Fang C, Song F, Xin Y et al. Bacillus oceanisediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2010;60: 2924– 2929 [CrossRef]
    [Google Scholar]
  111. Vaz-Moreira I, Figueira V, Lopes AR, Lobo-da-Cunha A, Spröer C et al. Bacillus purgationiresistans sp. nov., isolated from a drinking-water treatment plant. Int J Syst Evol Microbiol 2012;62: 71– 77 [CrossRef]
    [Google Scholar]
  112. Liu B, Liu GH, Sengonca C, Schumann P, Wang JP et al. Bacillus praedii sp. nov., isolated from purplish paddy soil. Int J Syst Evol Microbiol 2017;67: 2823– 2828 [CrossRef]
    [Google Scholar]
  113. Liu B, Liu GH, Sengonca C, Schumann P, Ge CB et al. Bacillus solani sp. nov., isolated from rhizosphere soil of a potato field. Int J Syst Evol Microbiol 2015;65: 4066– 4071 [CrossRef]
    [Google Scholar]
  114. Yoon JH, Kang SS, Lee KC, Kho YH, Choi SH et al. Bacillus jeotgali sp. nov., isolated from jeotgal, Korean traditional fermented seafood. Int J Syst Evol Microbiol 2001;51: 1087– 1092 [CrossRef]
    [Google Scholar]
  115. Ahmed I, Yokota A, Fujiwara T. A novel highly boron tolerant bacterium, Bacillus boroniphilus sp. nov., isolated from soil, that requires boron for its growth. Extremophiles 2007;11: 217– 224 [CrossRef]
    [Google Scholar]
  116. Kumar RM, Kaur G, Kumar A, Bala M, Singh NK et al. Taxonomic description and genome sequence of Bacillus campisalis sp. nov., a member of the genus Bacillus isolated from a solar saltern. Int J Syst Evol Microbiol 2015;65: 3235– 3240 [CrossRef]
    [Google Scholar]
  117. Tiago I, Pires C, Mendes V, Morais PV, da Costa MS et al. Bacillus foraminis sp. nov., isolated from a non-saline alkaline groundwater. Int J Syst Evol Microbiol 2006;56: 2571– 2574 [CrossRef]
    [Google Scholar]
  118. Pal D, Mathan Kumar R, Kaur N, Kumar N, Kaur G et al. Bacillus maritimus sp. nov., a novel member of the genus Bacillus isolated from marine sediment. Int J Syst Evol Microbiol 2017;67: 60– 66 [CrossRef]
    [Google Scholar]
  119. Didari M, Amoozegar MA, Bagheri M, Mehrshad M, Schumann P et al. Bacillus persicus sp. nov., a halophilic bacterium from a hypersaline lake. Int J Syst Evol Microbiol 2013;63: 1229– 1234 [CrossRef]
    [Google Scholar]
  120. Sylvan JB, Hoffman CL, Momper LM, Toner BM, Amend JP et al. Bacillus rigiliprofundi sp. nov., an endospore-forming, Mn-oxidizing, moderately halophilic bacterium isolated from deep subseafloor basaltic crust. Int J Syst Evol Microbiol 2015;65: 1992– 1998 [CrossRef]
    [Google Scholar]
  121. Yamamura S, Yamashita M, Fujimoto N, Kuroda M, Kashiwa M et al. Bacillus selenatarsenatis sp. nov., a selenate- and arsenate-reducing bacterium isolated from the effluent drain of a glass-manufacturing plant. Int J Syst Evol Microbiol 2007;57: 1060– 1064 [CrossRef]
    [Google Scholar]
  122. Müller N, Scherag FD, Pester M, Schink B. Bacillus stamsii sp. nov., a facultatively anaerobic sugar degrader that is numerically dominant in freshwater lake sediment. Syst Appl Microbiol 2015;38: 379– 389 [CrossRef]
    [Google Scholar]
  123. Kanso S, Greene AC, Patel BKC. Bacillus subterraneus sp. nov., an iron- and manganese-reducing bacterium from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 2002;52: 869– 874 [CrossRef]
    [Google Scholar]
  124. Pérez-Ibarra BM, Flores ME, García-Varela M, Pérez-Ibarra B. Mónica, Flores María Elena. Isolation and characterization of Bacillus thioparus sp. nov., chemolithoautotrophic, thiosulfate-oxidizing bacterium. FEMS Microbiol Lett 2007;271: 289– 296 [CrossRef]
    [Google Scholar]
  125. Kämpfer P, Busse HJ, McInroy JA, Hu CH, Kloepper JW et al. Bacillus zeae sp. nov., isolated from the rhizosphere of Zea mays. Int J Syst Evol Microbiol 2017;67: 1058– 1063 [CrossRef]
    [Google Scholar]
  126. Nagel M, Andreesen JR. Bacillus niacini sp. nov., a nicotinate-metabolizing mesophile isolated from soil. Int J Syst Bacteriol 1991;41: 134– 139 [CrossRef]
    [Google Scholar]
  127. Heyrman J, Vanparys B, Logan NA, Balcaen A, Rodríguez-Díaz M et al. Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the drentse a grasslands. Int J Syst Evol Microbiol 2004;54: 47– 57 [CrossRef]
    [Google Scholar]
  128. Kämpfer P, Busse HJ, Glaeser SP, Kloepper JW, Hu CH et al. Bacillus cucumis sp. nov. isolated from the rhizosphere of cucumber (Cucumis sativus). Int J Syst Evol Microbiol 2016;66: 1039– 1044 [CrossRef]
    [Google Scholar]
  129. Logan NA, Lebbe L, Hoste B, Goris J, Forsyth G et al. Aerobic endospore-forming bacteria from geothermal environments in northern Victoria Land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the proposal of Bacillus fumarioli sp. nov. Int J Syst Evol Microbiol 2000;50: 1741– 1753 [CrossRef]
    [Google Scholar]
  130. Bittar F, Bibi F, Ramasamy D, Lagier JC, Azhar EI et al. Non contiguous-finished genome sequence and description of Bacillus jeddahensis sp. nov. Stand Genomic Sci 2015;10: 47 [CrossRef]
    [Google Scholar]
  131. Liu B, Liu GH, Hu GH, Chen MC. Bacillus mesonae sp. nov., isolated from the root of Mesona chinensis. Int J Syst Evol Microbiol 2014;64: 3346– 3352 [CrossRef]
    [Google Scholar]
  132. Zhang MY, Cheng J, Cai Y, Zhang TY, Wu YY et al. Bacillus notoginsengisoli sp. nov., a novel bacterium isolated from the rhizosphere of Panax notoginseng. Int J Syst Evol Microbiol 2017;67: 2581– 2585 [CrossRef]
    [Google Scholar]
  133. Han L, Yang G, Zhou X, Yang D, Hu P et al. Bacillus thermocopriae sp. nov., isolated from a compost. Int J Syst Evol Microbiol 2013;63: 3024– 3029 [CrossRef]
    [Google Scholar]
  134. Dooren de Jong Le Den Über Bacillus fastidiosus. Zentralbl Bakteriol B 1929;79: 344– 353
    [Google Scholar]
  135. Chen JH, Tian XR, Ruan Y, Yang LL, He ZQ et al. Bacillus crassostreae sp. nov., isolated from an oyster (Crassostrea hongkongensis). Int J Syst Evol Microbiol 2015;65: 1561– 1566 [CrossRef]
    [Google Scholar]
  136. Parag B, Sasikala C, Ramana CV. Bacillus endolithicus sp. nov., isolated from pebbles. Int J Syst Evol Microbiol 2015;65: 4568– 4573 [CrossRef]
    [Google Scholar]
  137. Balcázar JL, Pintado J, Planas M. Bacillus galliciensis sp. nov., isolated from faeces of wild seahorses (Hippocampus guttulatus). Int J Syst Evol Microbiol 2010;60: 892– 895 [CrossRef]
    [Google Scholar]
  138. Mehrshad M, Amoozegar MA, Didari M, Bagheri M, Fazeli SAS et al. Bacillus halosaccharovorans sp. nov., a moderately halophilic bacterium from a hypersaline lake. Int J Syst Evol Microbiol 2013;63: 2776– 2781 [CrossRef]
    [Google Scholar]
  139. Wieser M, Worliczek H, Kämpfer P, Busse HJ. Bacillus herbersteinensis sp. nov. Int J Syst Evol Microbiol 2005;55: 2119– 2123 [CrossRef]
    [Google Scholar]
  140. Stropko SJ, Pipes SE, Newman JD. Genome-based reclassification of Bacillus cibi as a later heterotypic synonym of Bacillus indicus and emended description of Bacillus indicus. Int J Syst Evol Microbiol 2014;64: 3804– 3809 [CrossRef]
    [Google Scholar]
  141. Yoon JH, Oh TK. Bacillus litoralis sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2005;55: 1945– 1948 [CrossRef]
    [Google Scholar]
  142. Abbas S, Ahmed I, Kudo T, Iqbal M, Lee YJ et al. A heavy metal tolerant novel bacterium, Bacillus malikii sp. nov., isolated from tannery effluent wastewater. Antonie van Leeuwenhoek 2015;108: 1319– 1330 [CrossRef]
    [Google Scholar]
  143. Kwon SW, Lee SY, Kim BY, Weon HY, Kim JB et al. Bacillus niabensis sp. nov., isolated from cotton-waste composts for mushroom cultivation. Int J Syst Evol Microbiol 2007;57: 1909– 1913 [CrossRef]
    [Google Scholar]
  144. Nielsen P, Fritze D, Priest FG. Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 1995;141: 1745– 1761 [CrossRef]
    [Google Scholar]
  145. Ivanova EP, Alexeeva YA, Zhukova NV, Gorshkova NM, Buljan V et al. Bacillus algicola sp. nov., a novel filamentous organism isolated from brown alga Fucus evanescens. Syst Appl Microbiol 2004;27: 301– 307 [CrossRef]
    [Google Scholar]
  146. Sorokin DY, van Pelt S, Tourova TP. Utilization of aliphatic nitriles under haloalkaline conditions by Bacillus alkalinitrilicus sp. nov. isolated from soda solonchak soil. FEMS Microbiol Lett 2008;288: 235– 240 [CrossRef]
    [Google Scholar]
  147. Borsodi AK, Pollak B, Keki Z, Rusznyak A, Kovacs AL et al. Bacillus alkalisediminis sp. nov., an alkaliphilic and moderately halophilic bacterium isolated from sediment of extremely shallow soda ponds. Int J Syst Evol Microbiol 2011;61: 1880– 1886 [CrossRef]
    [Google Scholar]
  148. Nedashkovskaya OI, Van Trappen S, Frolova GM, De Vos P. Bacillus berkeleyi sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. Arch Microbiol 2012;194: 215– 221 [CrossRef]
    [Google Scholar]
  149. Vargas VA, Delgado OD, Hatti-Kaul R, Mattiasson B. Bacillus bogoriensis sp. nov., a novel alkaliphilic, halotolerant bacterium isolated from a Kenyan soda lake. Int J Syst Evol Microbiol 2005;55: 899– 902 [CrossRef]
    [Google Scholar]
  150. Heyrman J, Balcaen A, Rodriguez-Diaz M, Logan NA, Swings J et al. Bacillus decolorationis sp. nov., isolated from biodeteriorated parts of the mural paintings at the servilia tomb (Roman necropolis of Carmona, Spain) and the saint-catherine chapel (Castle Herberstein, Austria). Int J Syst Evol Microbiol 2003;53: 459– 463 [CrossRef]
    [Google Scholar]
  151. Chen YG, Zhang YQ, He JW, Klenk HP, Xiao JQ et al. Bacillus hemicentroti sp. nov., a moderate halophile isolated from a sea urchin. Int J Syst Evol Microbiol 2011;61: 2950– 2955 [CrossRef]
    [Google Scholar]
  152. Yoon JH, Kim IG, Kang KH, Oh TK, Park YH. Bacillus hwajinpoensis sp. nov. and an unnamed Bacillus genomospecies, novel members of Bacillus rRNA group 6 isolated from sea water of the East Sea and the Yellow Sea in Korea. Int J Syst Evol Microbiol 2004;54: 803– 808 [CrossRef]
    [Google Scholar]
  153. Yumoto I, Yamaga S, Sogabe Y, Nodasaka Y, Matsuyama H et al. Bacillus krulwichiae sp. nov., a halotolerant obligate alkaliphile that utilizes benzoate and m-hydroxybenzoate. Int J Syst Evol Microbiol 2003;53: 1531– 1536 [CrossRef]
    [Google Scholar]
  154. Ghosh A, Bhardwaj M, Satyanarayana T, Khurana M, Mayilraj S et al. Bacillus lehensis sp. nov., an alkalitolerant bacterium isolated from soil. Int J Syst Evol Microbiol 2007;57: 238– 242 [CrossRef]
    [Google Scholar]
  155. Zhu D, Tanabe SH, Xie C, Honda D, Sun J et al. Bacillus ligniniphilus sp. nov., an alkaliphilic and halotolerant bacterium isolated from sediments of the South China Sea. Int J Syst Evol Microbiol 2014;64: 1712– 1717 [CrossRef]
    [Google Scholar]
  156. Dou G, Liu H, He W, Ma Y. Bacillus lindianensis sp. nov., a novel alkaliphilic and moderately halotolerant bacterium isolated from saline and alkaline soils. Antonie van Leeuwenhoek 2016;109: 149– 158 [CrossRef]
    [Google Scholar]
  157. Reddy SV, Thirumala M, Farooq M, Sasikala C, Ramana CV. Bacillus lonarensis sp. nov., an alkalitolerant bacterium isolated from a soda lake. Arch Microbiol 2015;197: 27– 34 [CrossRef]
    [Google Scholar]
  158. Santini JM, Streimann ICA, vanden Hoven RN. Bacillus macyae sp. nov., an arsenate-respiring bacterium isolated from an Australian gold mine. Int J Syst Evol Microbiol 2004;54: 2241– 2244 [CrossRef]
    [Google Scholar]
  159. Denizci AA, Kazan D, Erarslan A. Bacillus marmarensis sp. nov., an alkaliphilic, protease-producing bacterium isolated from mushroom compost. Int J Syst Evol Microbiol 2010;60: 1590– 1594 [CrossRef]
    [Google Scholar]
  160. Borchert MS, Nielsen P, Graeber I, Kaesler I, Szewzyk U et al. Bacillus plakortidis sp. nov. and Bacillus murimartini sp. nov., novel alkalitolerant members of rRNA group 6. Int J Syst Evol Microbiol 2007;57: 2888– 2893 [CrossRef]
    [Google Scholar]
  161. Zhang J, Wang J, Song F, Fang C, Xin Y et al. Bacillus nanhaiisediminis sp. nov., an alkalitolerant member of Bacillus rRNA group 6. Int J Syst Evol Microbiol 2011;61: 1078– 1083 [CrossRef]
    [Google Scholar]
  162. Nowlan B, Dodia MS, Singh SP, Patel BKC. Bacillus okhensis sp. nov., a halotolerant and alkalitolerant bacterium from an Indian saltpan. Int J Syst Evol Microbiol 2006;56: 1073– 1077 [CrossRef]
    [Google Scholar]
  163. Li Z, Kawamura Y, Shida O, Yamagata S, Deguchi T et al. Bacillus okuhidensis sp. nov., isolated from the Okuhida spa area of Japan. Int J Syst Evol Microbiol 2002;52: 1205– 1209 [CrossRef]
    [Google Scholar]
  164. Yumoto I, Hirota K, Goto T, Nodasaka Y, Nakajima K. Bacillus oshimensis sp. nov., a moderately halophilic, non-motile alkaliphile. Int J Syst Evol Microbiol 2005;55: 907– 911 [CrossRef]
    [Google Scholar]
  165. Olivera N, Siñeriz F, Breccia JD. Bacillus patagoniensis sp. nov., a novel alkalitolerant bacterium from the rhizosphere of Atriplex lampa in Patagonia, Argentina. Int J Syst Evol Microbiol 2005;55: 443– 447 [CrossRef]
    [Google Scholar]
  166. Madhaiyan M, Poonguzhali S, Lee JS, Lee KC, Hari K. Bacillus rhizosphaerae sp. nov., an novel diazotrophic bacterium isolated from sugarcane rhizosphere soil. Antonie van Leeuwenhoek 2011;100: 437– 444 [CrossRef]
    [Google Scholar]
  167. Lei Z, Qiu P, Ye R, Tian J, Liu Y et al. Bacillus shacheensis sp. nov., a moderately halophilic bacterium isolated from a saline-alkali soil. J Gen Appl Microbiol 2014;60: 101– 105 [CrossRef]
    [Google Scholar]
  168. Aizawa T, Urai M, Iwabuchi N, Nakajima M, Sunairi M. Bacillus trypoxylicola sp. nov., xylanase-producing alkaliphilic bacteria isolated from the guts of Japanese horned beetle larvae (Trypoxylus dichotomus septentrionalis). Int J Syst Evol Microbiol 2010;60: 61– 66 [CrossRef]
    [Google Scholar]
  169. Chen YG, Zhang YQ, Chen QH, Klenk HP, He JW et al. Bacillus xiaoxiensis sp. nov., a slightly halophilic bacterium isolated from non-saline forest soil. Int J Syst Evol Microbiol 2011;61: 2095– 2100 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003775
Loading
/content/journal/ijsem/10.1099/ijsem.0.003775
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error