1887

Abstract

A polyphasic taxonomic approach was used to characterize a nitrogen-fixing bacterium, designated strain CC-HIH110, isolated from paddy soil in Taiwan. Cells of strain CC-HIH110 were Gram-stain-negative, rod-shaped, motile with polar flagella, catalase-positive and oxidase-positive. Optimal growth occurred at 30 °С, pH 7 and 1 % NaCl. Phylogenetic analyses based on 16S rRNA genes revealed a distinct taxonomic position attained by strain CC-HIH110 associated with (98.4 % sequence identity), (97.8 %), (97.7 %) and (96.0 %), and lower sequence similarity to other species. Average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between strain CC-HIH110 and the type strains of other closely related species were 71.5–88.6 % and 19.6–35.5 %, respectively. Strain CC-HIH110 contained C 3-OH, C 3-OH/iso C I and C 7/C 6 as the predominant fatty acids. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine, phosphatidylcholine, three unknown aminophospholipids, two unknown phospholipids and an unknown lipid. The major polyamine was homospermidine. The DNA G+C content was 55.0 mol% and the predominant quinone was ubiquinone (Q-10). Based on its distinct phylogenetic, phenotypic and chemotaxonomic traits together with results of comparative 16S rRNA gene sequence, ANI and dDDH analyses, strain CC-HIH110 is proposed to represent a novel species, for which the name sp. nov. (type strain CC-HIH110=BCRC 80932=JCM 31228). In addition, is reclassified as (type strain N19=ACCC 19962=KCTC 52413) comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003770
2019-10-18
2019-11-12
Loading full text...

Full text loading...

References

  1. Conn HJ. Taxonomic relationships of certain non-sporeforming rods in soil. J Bacteriol 1938;36: 320– 321
    [Google Scholar]
  2. Frank B. Über die Pilzsymbiose der Leguminosen. Ber Dtsch Bot Ges 1889;7: 332– 346
    [Google Scholar]
  3. Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada H. A revision of rhizobium frank 1889, with an emended description of the genus, and the inclusion of all species of agrobacterium conn 1942 and allorhizobium undicola de lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. Vitis. Int J Syst Evol Microbiol 2001;51: 89– 103 [CrossRef]
    [Google Scholar]
  4. Conn HJ. Validity of the genus Alcaligenes. J Bacteriol 1942;44: 353– 360
    [Google Scholar]
  5. de Lajudie P, Laurent-Fulele E, Willems A, Torck U, Coopman R et al. Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int J Syst Bacteriol 1998;48: 1277– 1290 [CrossRef]
    [Google Scholar]
  6. Ramírez-Bahena MH, Vial L, Lassalle F, Diel B, Chapulliot D et al. Single acquisition of protelomerase gave rise to speciation of a large and diverse clade within the Agrobacterium/Rhizobium supercluster characterized by the presence of a linear chromid. Mol Phylogenet Evol 2014;73: 202– 207 [CrossRef]
    [Google Scholar]
  7. Mousavi SA, Österman J, Wahlberg N, Nesme X, Lavire C et al. Phylogeny of the Rhizobium-Allorhizobium-Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol 2014;37: 208– 215 [CrossRef]
    [Google Scholar]
  8. Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K. Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 2015;38: 84– 90 [CrossRef]
    [Google Scholar]
  9. Zhang GX, Ren SZ, Xu MY, Zeng GQ, Luo HD et al. Rhizobium borbori sp. nov., aniline-degrading bacteria isolated from activated sludge. Int J Syst Evol Microbiol 2011;61: 816– 822 [CrossRef]
    [Google Scholar]
  10. Peng G, Yuan Q, Li H, Zhang W, Tan Z. Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta. Int J Syst Evol Microbiol 2008;58: 2158– 2163 [CrossRef]
    [Google Scholar]
  11. Kittiwongwattana C, Thawai C. Rhizobium paknamense sp. nov., isolated from lesser duckweeds (Lemna aequinoctialis). Int J Syst Evol Microbiol 2013;63: 3823– 3828 [CrossRef]
    [Google Scholar]
  12. Zhang X, Sun L, Ma X, Sui XH, Jiang R. Rhizobium pseudoryzae sp. nov., isolated from the rhizosphere of rice. Int J Syst Evol Microbiol 2011;61: 2425– 2429 [CrossRef]
    [Google Scholar]
  13. Yao LJ, Shen YY, Zhan JP, Xu W, Cui GL et al. Rhizobium taibaishanense sp. nov., isolated from a root nodule of Kummerowia striata. Int J Syst Evol Microbiol 2012;62: 335– 341 [CrossRef]
    [Google Scholar]
  14. Ophel K, Kerr A. Agrobacterium Vitis sp. nov. for strains of Agrobacterium biovar 3 from grapevines. Int J Syst Bacteriol 1990;40: 236– 241 [CrossRef]
    [Google Scholar]
  15. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68: 461– 466 [CrossRef]
    [Google Scholar]
  16. de Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E et al. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol 2019;69: 1852– 1863 [CrossRef]
    [Google Scholar]
  17. Zhou J, Fries MR, Chee-Sanford JC, Tiedje JM. Phylogenetic analyses of a new group of denitrifiers capable of anaerobic growth of toluene and description of Azoarcus tolulyticus sp. nov. Int J Syst Bacteriol 1995;45: 500– 506 [CrossRef]
    [Google Scholar]
  18. Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilp SA, Young JP. Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 2001;51: 2037– 2048 [CrossRef]
    [Google Scholar]
  19. Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P et al. Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 2001;147: 981– 993 [CrossRef]
    [Google Scholar]
  20. Sarita S, Sharma PK, Priefer UB, Prell J. Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. FEMS Microbiol Ecol 2005;54: 1– 11 [CrossRef]
    [Google Scholar]
  21. Poly F, Monrozier LJ, Bally R. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 2001;152: 95– 103 [CrossRef]
    [Google Scholar]
  22. Zehr JP, McReynolds LA. Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 1989;55: 2522– 2526
    [Google Scholar]
  23. Xie CH, Yokota A. Phylogenetic analyses of the nitrogen-fixing genus Derxia. J Gen Appl Microbiol 2004;50: 129– 135 [CrossRef]
    [Google Scholar]
  24. Heiner CR, Hunkapiller KL, Chen SM, Glass JI, Chen EY. Sequencing multimegabase-template DNA with BigDye terminator chemistry. Genome Res 1998;8: 557– 561 [CrossRef]
    [Google Scholar]
  25. Yoon SH, SM H, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2017;67: 1613– 1617
    [Google Scholar]
  26. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25: 4876– 4882 [CrossRef]
    [Google Scholar]
  27. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30: 2725– 2729 [CrossRef]
    [Google Scholar]
  28. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425 [CrossRef]
    [Google Scholar]
  29. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17: 368– 376 [CrossRef]
    [Google Scholar]
  30. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20: 406– 416 [CrossRef]
    [Google Scholar]
  31. Jukes TH, Cantor CR. Evolution of protein molecules In Munro HN. editor Mammalian Protein Metabolism 3 New York: Academic Press; 1969; pp 21– 32
    [Google Scholar]
  32. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39: 783– 791 [CrossRef]
    [Google Scholar]
  33. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19: 455– 477 [CrossRef]
    [Google Scholar]
  34. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66: 1100– 1103 [CrossRef]
    [Google Scholar]
  35. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60 [CrossRef]
    [Google Scholar]
  36. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44: 846– 849 [CrossRef]
    [Google Scholar]
  37. de Lajudie PM, Young JPW, Wang JPW. International committee on systematics of prokaryotes subcommittee for the Taxonomy of Rhizobium and Agrobacterium Minutes of the meeting, Budapest, 25 August 2016. Int J Syst Evol Microbiol 2017;67: 2485– 2494 [CrossRef]
    [Google Scholar]
  38. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018;56: 280– 285 [CrossRef]
    [Google Scholar]
  39. Zhao JJ, Zhang J, Sun L, Zhang RJ, Zhang CW et al. Rhizobium oryziradicis sp. nov., isolated from rice roots. Int J Syst Evol Microbiol 2017;67: 963– 968 [CrossRef]
    [Google Scholar]
  40. Lin SY, Hung MH, Hameed A, Liu YC, Hsu YH et al. Rhizobium capsici sp. nov., isolated from root tumor of a green bell pepper (Capsicum annuum var. grossum) plant. Antonie Van Leeuwenhoek 2015;107: 773– 784 [CrossRef]
    [Google Scholar]
  41. Lin SY, Hsu YH, Liu YC, Hung MH, Hameed A et al. Rhizobium straminoryzae sp. nov., isolated from the surface of rice straw. Int J Syst Evol Microbiol 2014;64: 2962– 2968 [CrossRef]
    [Google Scholar]
  42. Vincent JM. The cultivation, isolation and maintenance of rhizobia In Vincent JM. editor A Manual for the Practical Study of the Root-Nodule Bacteria Oxford: Blackwell Scientific; 1970; pp 1– 13
    [Google Scholar]
  43. Murray RGE, Doetsch RN, Robinow CF. Determination and cytological light microscopy In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp 32– 34
    [Google Scholar]
  44. Lin SY, Liu YC, Hameed A, Hsu YH, Lai WA et al. Azospirillum fermentarium sp. nov., a nitrogen-fixing species isolated from a fermenter. Int J Syst Evol Microbiol 2013;63: 3762– 3768 [CrossRef]
    [Google Scholar]
  45. Hameed A, Shahina M, Lin SY, Lai WA, Hsu YH et al. Aquibacter zeaxanthinifaciens gen. nov., sp. nov., a zeaxanthin-producing bacterium of the family Flavobacteriaceae isolated from surface seawater, and emended descriptions of the genera Aestuariibaculum and Gaetbulibacter. Int J Syst Evol Microbiol 2014;64: 138– 145 [CrossRef]
    [Google Scholar]
  46. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982;16: 584– 586
    [Google Scholar]
  47. Paisley R. MIS Whole Cell Fatty Acid Analysis by Gas Chromatography Training Manual Newark, DE: MIDI; 1996
    [Google Scholar]
  48. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  49. Scherer P, Kneifel H. Distribution of polyamines in methanogenic bacteria. J Bacteriol 1983;154: 1315– 1322
    [Google Scholar]
  50. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2: 233– 241 [CrossRef]
    [Google Scholar]
  51. Collins MD. Isoprenoid quinone analysis in classification and identification In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp 267– 287
    [Google Scholar]
  52. Hamana K, Sakamoto A, Tachiyanagi S, Terauchi E, Takeuchi M. Polyamine profiles of some members of the alpha subclass of the class Proteobacteria: polyamine analysis of twenty recently described genera. Microbiol Cult Coll 2003;19: 13– 21
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003770
Loading
/content/journal/ijsem/10.1099/ijsem.0.003770
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error