1887

Abstract

A novel non-pigmented, Gram-stain-negative, motile by means of a polar flagellum, aerobic and rod-shaped bacterium, designated HMF8227, was isolated from solar saltern sediment sampled at Shinan, Republic of Korea. The isolate was able to grow at 15–42 °C (optimum, 37 °C), at pH 6–8 (pH 7) and with 0.5–12 % NaCl (2–5 %). Strain HMF8227 was positive for hydrolysis of starch and dextrin. 16S rRNA gene sequence analysis revealed that strain HMF8227 was affiliated with the family , sharing the highest sequence similarities to the genera (93.0–94.4 %), (92.0–94.2 %) (92.0–93.6 %) and (93.6 %). In the phylogenetic trees, strain HMF8227 formed an independent clade with X13M-12. The major fatty acids were C, summed feature 3 (C 7 and/or C 6) and summed feature 8 (C 7 and/or C 6). The major respiratory quinone was ubiquinone-8 (Q-8). The major polar lipids are phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and two unidentified glycolipids. The DNA G+C content of the genomic DNA was 52.1 mol%. On the basis of the polyphasic characterizations, strain HMF8227 represents a novel species and genus within the family , for which the name gen. nov., sp. nov. is proposed, with the type strain being HMF8227 (=KCTC 62462 =NBRC 113230).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003748
2019-10-17
2019-11-15
Loading full text...

Full text loading...

References

  1. Ivanova EP, Mikhailov VV. A new family of Alteromonadaceae fam. nov., including the marine proteobacteria species Alteromonas, Pseudoalteromonas, Idiomarina and Colwellia. Mikrobiologiya 2001;70: 15– 23
    [Google Scholar]
  2. Ivanova EP, Flavier S, Christen R. Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 2004;54: 1773– 1788 [CrossRef]
    [Google Scholar]
  3. López-Pérez M, Rodriguez-Valera F. The Family Alteromonadaceae In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes- Gammaproteobacteria , 4th ed. New York: Springer; 2014; pp 69– 92
    [Google Scholar]
  4. Kim M-S, Jo SK, Roh SW, Bae J-W. Alishewanella agri sp. nov., isolated from landfill soil. Int J Syst Evol Microbiol 2010;60: 2199– 2203 [CrossRef]
    [Google Scholar]
  5. Fonnesbech Vogel B, Venkateswaran K, Christensen H, Falsen E, Christiansen G et al. Polyphasic taxonomic approach in the description of Alishewanella fetalis gen. nov., sp. nov., isolated from a human foetus. Int J Syst Evol Microbiol 2000;50: 1133– 1142 [CrossRef]
    [Google Scholar]
  6. Sheu D-S, Sheu S-Y, Lin K-R, Chen Y-lingL, Chen W-M. Planctobacterium marinum gen. nov., sp. nov., a new member of the family Alteromonadaceae isolated from seawater. Int J Syst Evol Microbiol 2017;67: 974– 980 [CrossRef]
    [Google Scholar]
  7. Verma A, Krishnamurthi S, Mual P, Mayilraj S. Tamilnaduibacter salinus gen. nov., sp. nov., a halotolerant gammaproteobacterium within the family Alteromonadaceae, isolated from a salt pan in Tamilnadu, India. Int J Syst Evol Microbiol 2015;65: 3248– 3255 [CrossRef]
    [Google Scholar]
  8. Lane DJ. 16S/23S rRNA sequencing In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp 125– 175
    [Google Scholar]
  9. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 1999;41: 95– 98
    [Google Scholar]
  10. Yoon SH, SM H, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: 1613– 1617
    [Google Scholar]
  11. Pruesse E, Peplies J, Glöckner FO. Sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28: 1823– 1829 [CrossRef]
    [Google Scholar]
  12. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17: 368– 376 [CrossRef]
    [Google Scholar]
  13. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20: 406– 416 [CrossRef]
    [Google Scholar]
  14. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33: 1870– 1874 [CrossRef]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425
    [Google Scholar]
  16. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39: 783– 791 [CrossRef]
    [Google Scholar]
  17. SI N, Kim YO, Yoon SH, SM H, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018;56: 280– 285
    [Google Scholar]
  18. Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M et al. Bacterial phylogeny based on comparative sequence analysis (review). Electrophoresis 1998;19: 554– 568 [CrossRef]
    [Google Scholar]
  19. Brown AE. Benson's Microbiological Applications Laboratory Manual in General Microbiology , 10th ed. New York: McGraw-Hill; 2007
    [Google Scholar]
  20. CLSI Performance Standards for Antimicrobial Disk Susceptibility Testing: Approved Standard , 11th ed. CLSI Document M02-A11. PA: Clinical and Laboratory Standards Institute; 2012
    [Google Scholar]
  21. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2: 233– 241 [CrossRef]
    [Google Scholar]
  22. Collins MD. Analysis of isoprenoid quinones In Gottschalk G. editor Methods in Microbiology18 New York: Academic Press; 1985; pp 329– 366
    [Google Scholar]
  23. Collins MD, Jones D. A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol 1981;51: 129– 134
    [Google Scholar]
  24. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  25. Yoon JH, Kang SJ, Lee SY. Salinimonas lutimaris sp. nov., a polysaccharide-degrading bacterium isolated from a tidal flat. Antonie van Leeuwenhoek 2012;101: 803– 810 [CrossRef]
    [Google Scholar]
  26. Jeon CO, Lim JM, Park DJ, Kim CJ. Salinimonas chungwhensis gen. nov., sp. nov., a moderately halophilic bacterium from a solar saltern in Korea. Int J Syst Evol Microbiol 2005;55: 239– 243 [CrossRef]
    [Google Scholar]
  27. Yi H, Bae KS, Chun J. Aestuariibacter salexigens gen. nov., sp. nov. and Aestuariibacter halophilus sp. nov., isolated from tidal flat sediment, and emended description of Alteromonas macleodii. Int J Syst Evol Microbiol 2004;54: 571– 576 [CrossRef]
    [Google Scholar]
  28. Wang Y, Wang H, Liu J, Lai Q, Shao Z et al. Aestuariibacter aggregatus sp. nov., a moderately halophilic bacterium isolated from seawater of the Yellow Sea. FEMS Microbiol Lett 2010;110: 48– 54 [CrossRef]
    [Google Scholar]
  29. Zhong ZP, Liu HC, Wang F, Liu ZP, Zhou YG et al. Lacimicrobium alkaliphilum gen. nov., sp. nov., a member of the family Alteromonadaceae isolated from a salt lake. Int J Syst Evol Microbiol 2016;66: 422– 429 [CrossRef]
    [Google Scholar]
  30. Ivanova EP et al. Alteromonas addita sp. nov. Int J Syst Evol Microbiol 2005;55: 1065– 1068 [CrossRef]
    [Google Scholar]
  31. Park S, Choi SJ, Park JM, Yoon JH. Alteromonas aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017;67: 2791– 2797 [CrossRef]
    [Google Scholar]
  32. Ivanova EP, Ng HJ, Webb HK, Kurilenko VV, Zhukova NV et al. Alteromonas australica sp. nov., isolated from the Tasman Sea. Antonie van Leeuwenhoek 2013;103: 877– 884 [CrossRef]
    [Google Scholar]
  33. Park S, Kang CH, Park JM, Won SM, Yoon JH et al. Alteromonas confluentis sp. nov., isolated from the junction between the ocean and a freshwater spring. Int J Syst Evol Microbiol 2015;65: 3603– 3608 [CrossRef]
    [Google Scholar]
  34. Vandecandelaere I, Nercessian O, Segaert E, Achouak W, Mollica A et al. Alteromonas genovensis sp. nov., isolated from a marine electroactive biofilm and emended description of Alteromonas macleodii Baumann et al. 1972 (Approved Lists 1980). Int J Syst Evol Microbiol 2008;58: 2589– 2596 [CrossRef]
    [Google Scholar]
  35. Matsuyama H, Minami H, Sakaki T, Kasahara H, Baba S et al. Alteromonas gracilis sp. nov., a marine polysaccharide-producing bacterium. Int J Syst Evol Microbiol 2015;65: 1498– 1503 [CrossRef]
    [Google Scholar]
  36. Chen YG, Xiao HD, Tang SK, Zhang YQ, Borrathybay E et al. Alteromonas halophila sp. nov., a new moderately halophilic bacterium isolated from a sea anemone. Antonie van Leeuwenhoek 2009;96: 259– 266 [CrossRef]
    [Google Scholar]
  37. Martínez-Checa F, Béjar V, Llamas I, Del Moral A, Quesada E. Alteromonas hispanica sp. nov., a polyunsaturated-fatty-acid-producing, halophilic bacterium isolated from Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol 2005;55: 2385– 2390 [CrossRef]
    [Google Scholar]
  38. Shi XL, YH W, Jin XB, Wang CS, XW X. Alteromonas lipolytica sp. nov., a poly-beta-hydroxybutyrate-producing bacterium isolated from surface seawater. Int J Syst Evol Microbiol 2017;67: 237– 242
    [Google Scholar]
  39. Yoon JH, Yeo SH, TK O, Park YH. Alteromonas litorea sp. nov., a slightly halophilic bacterium isolated from an intertidal sediment of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2004;54: 1197– 1201 [CrossRef]
    [Google Scholar]
  40. Baumann L, Baumann P, Mandel M, Allen RD. Taxonomy of aerobic marine eubacteria. J Bacteriol 1972;110: 402– 429
    [Google Scholar]
  41. Yoon J-H, Kim IG, Kang KH, TK O, Park YH. Alteromonas marina sp. nov., isolated from sea water of the East Sea in Korea. Int J Syst Evol Microbiol 2003;53: 1625– 1630 [CrossRef]
    [Google Scholar]
  42. Mi Jin H, Hyun Kim K, Ok Jeon C. Alteromonas naphthalenivorans sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from tidal-flat sediment. Int J Syst Evol Microbiol 2015;65: 4208– 4214 [CrossRef]
    [Google Scholar]
  43. Jin Q-wen, Hu Y-hua, Sun L. Alteromonas oceani sp. nov., isolated from deep-sea sediment of a hydrothermal field. Int J Syst Evol Microbiol 2018;68: 657– 662 [CrossRef]
    [Google Scholar]
  44. Sinha RK, Krishnan KP, Singh A, Thomas FA, Jain A et al. Alteromonas pelagimontana sp. nov., a marine exopolysaccharide-producing bacterium isolated from the Southwest Indian Ridge. Int J Syst Evol Microbiol 2017;67: 4032– 4038 [CrossRef]
    [Google Scholar]
  45. Chiu HH, Shieh WY, Lin SY, Tseng CM, Chiang PW et al. Alteromonas tagae sp. nov. and Alteromonas simiduii sp. nov., mercury-resistant bacteria isolated from a Taiwanese estuary. Int J Syst Evol Microbiol 2007;57: 1209– 1216 [CrossRef]
    [Google Scholar]
  46. Van Trappen S, Tan TL, Yang J, Mergaert J, Swings J. Alteromonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Alteromonas. Int J Syst Evol Microbiol 2004;54: 1157– 1163 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003748
Loading
/content/journal/ijsem/10.1099/ijsem.0.003748
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error