1887

Abstract

Thermotolerant bacterial nanocellulose-producing strains, designated MSKU 9 and MSKU 15, were isolated from persimmon and sapodilla fruits, respectively. These strains were aerobic, Gram-stain-negative, had rod-shaped cells, were non-motile and formed white–cream colonies. Phylogeny based on the 16S rRNA gene sequences revealed that MSKU 9 and MSKU 15 represented members of the genus and formed a monophyletic branch with JCM 17123 and DSM 6160. The genomic analysis revealed that overall genomic relatedness index values of MSKU 9 with JCM 17123 and DSM 6160 were ~90 % average nucleotide identity (ANI) and ≤58.2 % digital DNA–DNA hybridization (dDDH), respectively. MSKU 9 and MSKU 15 can be differentiated from the closely related JCM 17123 by their growth on 30 % -glucose and ability to utilize and to form acid from raffinose and sucrose as carbon sources, and from DSM 6160 by their ability to grow without acetic acid. The genomic DNA G+C contents of MSKU 9 and MSKU 15 were 60.4 and 60.2 mol%, respectively. The major fatty acids of MSKU 9 and MSKU 15 were summed feature 8 (C ω7c and/or Cω6c). The respiratory quinone was determined to be Q10. On the basis of the results of the polyphasic taxonomic analysis, MSKU 9 (=TBRC 9844=NBRC 113802) represents a novel species of the genus , for which the name sp. nov. is proposed.

Funding
This study was supported by the:
  • National Science and Technology Development Agency (NSTDA) (Award TG-01-52-004D)
    • Principle Award Recipient: Kallayanee Naloka
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003745
2020-02-03
2024-05-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/1/251.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003745&mimeType=html&fmt=ahah

References

  1. Komagata K, Lino T, Yamada Y. The Family Acetobacteraceae . In DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes Alphaproteobacteria and Betaproteobacteria Berlin Heidelberg: Springer-Verlag; 2014 pp 3–78
    [Google Scholar]
  2. Shinjoh M, Toyama H. Industrial Application of Acetic Acid Bacteria (Vitamin C and Others). In Matsushita K, Toyama H, Tonouchi N, Okamoto-Kainuma A. (editors) Acetic Acid Bacteria: Ecology and Physiology Tokyo: Springer Japan; 2016 pp 321–338
    [Google Scholar]
  3. Barja F, Andrés Barrao C, Pérez R, Cabello EM, Chappuis ML. Physiology of Komagataeibacter spp. During Acetic Acid Fermentation. In Matsushita K, Toyama H, Tonouchi N, Okamoto-Kainuma A. (editors) Acetic Acid Bacteria: Ecology and Physiology Tokyo: Springer Japan; 2016 pp 201–221 [View Article]
    [Google Scholar]
  4. Yamada Y, Yukphan P, Lan Vu HT, Muramatsu Y, Ochaikul D et al. Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J Gen Appl Microbiol 2012; 58:397–404 [View Article]
    [Google Scholar]
  5. Yamada Y. Systematics of Acetic Acid Bacteria. In Matsushita K, Toyama H, Tonouchi N, Okamoto-Kainuma A. (editors) Acetic Acid Bacteria: Ecology and Physiology Tokyo: Springer Japan; 2016 pp 1–50
    [Google Scholar]
  6. Yamada Y. Transfer of Gluconacetobacter kakiaceti, Gluconacetobacter medellinensis and Gluconacetobacter maltaceti to the genus Komagataeibacter as Komagataeibacter kakiaceti comb. nov., Komagataeibacter medellinensis comb. nov. and Komagataeibacter maltaceti comb. nov. Int J Syst Evol Microbiol 2014; 64:1670–1672 [View Article]
    [Google Scholar]
  7. Liu L-X, Liu S-X, Wang Y-M, Bi J-C, Chen H-M et al. Komagataeibacter cocois sp. nov., a novel cellulose-producing strain isolated from coconut milk. Int J Syst Evol Microbiol 2018; 68:3125–3131 [View Article]
    [Google Scholar]
  8. Škraban J, Cleenwerck I, Vandamme P, Fanedl L, Trček J. Genome sequences and description of novel exopolysaccharides producing species Komagataeibacter pomaceti sp. nov. and reclassification of Komagataeibacter kombuchae (Dutta and Gachhui 2007) Yamada et al., 2013 as a later heterotypic synonym of Komagataeibacter hansenii (Gosselé et al. 1983) Yamada et al., 2013. Syst Appl Microbiol 2018; 41:581–592 [View Article]
    [Google Scholar]
  9. Schüller G, Hertel C, Hammes WP. Gluconacetobacter entanii sp. nov., isolated from submerged high-acid industrial vinegar fermentations. Int J Syst Evol Microbiol 2000; 50 Pt 6:2013–2020 [View Article]
    [Google Scholar]
  10. Trček J, Mira NP, Jarboe LR. Adaptation and tolerance of bacteria against acetic acid. Appl Microbiol Biotechnol 2015; 99:6215–6229 [View Article]
    [Google Scholar]
  11. Ross P, Mayer R, Benziman M. Cellulose biosynthesis and function in bacteria. Microbiol Rev 1991; 55:35–58
    [Google Scholar]
  12. Reiniati I, Hrymak AN, Margaritis A. Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals. Crit Rev Biotechnol 2017; 37:510–524 [View Article]
    [Google Scholar]
  13. Islam MU, Ullah MW, Khan S, Shah N, Park JK. Strategies for cost-effective and enhanced production of bacterial cellulose. Int J Biol Macromol 2017; 102:1166–1173 [View Article]
    [Google Scholar]
  14. Naloka K, Yukphan P, Matsushita K, Theeragool G. Molecular taxonomy and characterization of thermotolerant Komagataeibacter species for bacterial nanocellulose production at high temperatures. Chiang Mai J Sci 2018; 45:1610–1622
    [Google Scholar]
  15. Saeki A, Theeragool G, Matsushita K, Toyama H, Lotong N et al. Development of thermotolerant acetic acid bacteria useful for vinegar fermentation at higher temperatures. Biosci Biotechnol Biochem 1997; 61:138–145 [View Article]
    [Google Scholar]
  16. Chinnawirotpisan P, Theeragool G, Limtong S, Toyama H, Adachi O et al. Quinoprotein alcohol dehydrogenase is involved in catabolic acetate production, while NAD-dependent alcohol dehydrogenase in ethanol assimilation in Acetobacter pasteurianus SKU1108. J Biosci Bioeng 2003; 96:564–571 [View Article]
    [Google Scholar]
  17. Lisdiyanti P, Navarro RR, Uchimura T, Komagata K. Reclassification of Gluconacetobacter hansenii strains and proposals of Gluconacetobacter saccharivorans sp. nov. and Gluconacetobacter nataicola sp. nov. Int J Syst Evol Microbiol 2006; 56:2101–2111 [View Article]
    [Google Scholar]
  18. Sievers M, Sellmer S, Teuber M. Acetobacter europaeus sp. nov., a main component of industrial vinegar fermenters in central Europe. Syst Appl Microbiol 1992; 15:386–392 [View Article]
    [Google Scholar]
  19. Yamada Y, Hoshino K, Ishikawa T. The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level. Biosci Biotechnol Biochem 1997; 61:1244–1251 [View Article]
    [Google Scholar]
  20. Dellaglio F, Cleenwerck I, Felis GE, Engelbeen K, Janssens D et al. Description of Gluconacetobacter swingsii sp. nov. and Gluconacetobacter rhaeticus sp. nov., isolated from Italian apple fruit. Int J Syst Evol Microbiol 2005; 55:2365–2370 [View Article]
    [Google Scholar]
  21. Boesch C, Trček J, Sievers M, Teuber M. Acetobacter intermedius, sp. nov. Syst Appl Microbiol 1998; 21:220–229 [View Article]
    [Google Scholar]
  22. Yamada Y. Transfer of Acetobacter oboediens Sokollek et al 1998 and Acetobacter intermedius Boesch et al. 1998 to the genus Gluconacetobacter as Gluconacetobacter oboediens comb. nov. and Gluconacetobacter intermedius comb. nov. Int J Syst Evol Microbiol 2000; 50 Pt 6:2225–2227 [View Article]
    [Google Scholar]
  23. Sokollek SJ, Hertel C, Hammes WP. Description of Acetobacter oboediens sp. nov. and Acetobacter pomorum sp. nov., two new species isolated from industrial vinegar fermentations. Int J Syst Bacteriol 1998; 48 Pt 3:935–940 [View Article]
    [Google Scholar]
  24. Sokollek SJ, Hammes WP. Description of a starter culture preparation for vinegar fermentation. Syst Appl Microbiol 1997; 20:481–491 [View Article]
    [Google Scholar]
  25. Okumura H, Uozumi T, Beppu T. Construction of plasmid vectors and a genetic transformation system for Acetobacter aceti . Agric Biol Chem 1985; 49:1011–1017 [View Article]
    [Google Scholar]
  26. Devereux R, Willis SG. Amplification of ribosomal RNA sequences. In Akkermans ADL, Van Elsas JD, De Bruijn FJ. (editors) Molecular Microbial Ecology Manual Dordrecht: Springer Netherlands; 1995 pp 277–287
    [Google Scholar]
  27. Ruiz A, Poblet M, Mas A, Guillamón JM. Identification of acetic acid bacteria by RFLP of PCR-amplified 16S rDNA and 16S-23S rDNA intergenic spacer. Int J Syst Evol Microbiol 2000; 50 Pt 6:1981–1987 [View Article]
    [Google Scholar]
  28. Pitiwittayakul N, Theeragool G, Yukphan P, Chaipitakchonlatarn W, Malimas T et al. Acetobacter suratthanensis sp. nov., an acetic acid bacterium isolated in Thailand. Ann Microbiol 2016; 66:1157–1166 [View Article]
    [Google Scholar]
  29. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  30. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  31. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article]
    [Google Scholar]
  32. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  33. Cleenwerck I, De Vos P, De Vuyst L. Phylogeny and differentiation of species of the genus Gluconacetobacter and related taxa based on multilocus sequence analyses of housekeeping genes and reclassification of Acetobacter xylinus subsp. sucrofermentans as Gluconacetobacter sucrofermentans (Toyosaki et al. 1996) sp. nov., comb. nov. Int J Syst Evol Microbiol 2010; 60:2277–2283 [View Article]
    [Google Scholar]
  34. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article]
    [Google Scholar]
  35. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article]
    [Google Scholar]
  36. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article]
    [Google Scholar]
  37. Hyatt D, LoCascio PF, Hauser LJ, Uberbacher EC. Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics 2012; 28:2223–2230 [View Article]
    [Google Scholar]
  38. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped blast and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article]
    [Google Scholar]
  39. Suzuki H, Lefébure T, Bitar PP, Stanhope MJ. Comparative genomic analysis of the genus Staphylococcus including Staphylococcus aureus and its newly described sister species Staphylococcus simiae . BMC Genomics 2012; 13:38–39 [View Article]
    [Google Scholar]
  40. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  41. Hucker GJ, Conn HJ. Methods of gram staining. Tech Bull N Y St Agric Exp Stn Tech Bull 1923; 93:3–37
    [Google Scholar]
  42. Yamada Y, Okada Y, Kondo K. Isolation and characterization of "polarly flagellated intermediate strains" in acetic acid bacteria. J Gen Appl Microbiol 1976; 22:237–245 [View Article]
    [Google Scholar]
  43. Yukphan P, Malimas T, Muramatsu Y, Takahashi M, Kaneyasu M et al. Ameyamaea chiangmaiensis gen. nov., sp. nov., an acetic acid bacterium in the alpha-proteobacteria . Biosci Biotechnol Biochem 2009; 73:2156–2162 [View Article]
    [Google Scholar]
  44. Trček J, Jernejc K, Matsushita K. The highly tolerant acetic acid bacterium Gluconacetobacter europaeus adapts to the presence of acetic acid by changes in lipid composition, morphological properties and PQQ-dependent ADH expression. Extremophiles 2007; 11:627–635 [View Article]
    [Google Scholar]
  45. Asai T, Iizuka H, Komagata K. The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. J Gen Appl Microbiol 1964; 10:95–126 [View Article]
    [Google Scholar]
  46. Yamada Y, Katsura K, Kawasaki H, Widyastuti Y, Saono S et al. Asaia bogorensis gen. nov., sp. nov., an unusual acetic acid bacterium in the alpha-proteobacteria. Int J Syst Evol Microbiol 2000; 50 Pt 2:823–829 [View Article]
    [Google Scholar]
  47. Cleenwerck I, De Vos P. Polyphasic taxonomy of acetic acid bacteria: an overview of the currently applied methodology. Int J Food Microbiol 2008; 125:2–14 [View Article]
    [Google Scholar]
  48. Cleenwerck I, Vandemeulebroecke K, Janssens D, Swings J. Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 2002; 52:1551–1558 [View Article]
    [Google Scholar]
  49. Hestrin S, Schramm M. Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 1954; 58:345–352 [View Article]
    [Google Scholar]
  50. Gosselé F, Swings J, De Ley J. A rapid, simple and simultaneous detection of 2-keto-, 5-keto-and 2,5-diketogluconic acids by thin-layer chromatography in culture media of acetic acid bacteria. Zentralblatt für Bakteriologie: I. Abt. Originale C: Allgemeine, angewandte und ökologische Mikrobiologie 1980; 1:178–181 [View Article]
    [Google Scholar]
  51. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36 [View Article]
    [Google Scholar]
  52. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. In Colwell RR, Grigorova R. (editors) Methods in Microbiology Academic Press; 1987 pp 161–207
    [Google Scholar]
  53. Navarro RR, Uchimura T, Komagata K. Taxonomic heterogeneity of strains comprising Gluconacetobacter hansenii . J Gen Appl Microbiol 1999; 45:295–300 [View Article]
    [Google Scholar]
  54. Matsutani M, Ito K, Azuma Y, Ogino H, Shirai M et al. Adaptive mutation related to cellulose producibility in Komagataeibacter medellinensis (Gluconacetobacter xylinus) NBRC 3288. Appl Microbiol Biotechnol 2015; 99:7229–7240 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003745
Loading
/content/journal/ijsem/10.1099/ijsem.0.003745
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error