1887

Abstract

A Gram-positive, aerobic, non-spore-forming, non-pigmented and non-motile actinobacterial strain was isolated from a soil sample collected in Guangzhou, China. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain 130 is most closely related to the type strain NBRC 105384, with a sequence similarity of 97.69 %. The isolate was distinguished from this phylogenetically related type strain by DNA–DNA hybridization (33.3 %), digital DNA–DNA hybridization (21.2 %), average nucleotide identity (75.7 %) and by a range of physiological and biochemical characteristics. Strain 130 contained MK-8(H) and MK-7 as the major menaquinones, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol as the main polar lipids, and iso-C, Cω8, anteiso-C, Cω9, C and iso-C as the major cellular fatty acids. The novel strain grew at 20–36 °C, at pH 6.0–8.0 and in the presence of 0–6 % (w/v) NaCl. The genomic DNA G+C content was 72.9 mol%. The genome contained 4817 putative protein-coding sequences, and 45 tRNA and three rRNA genes. Phylogenomic analysis confirmed that strain 130 belongs to the genus and distinguished it from recognized species with available genomes. Based on these polyphasic taxonomic data, strain 130 represents a new species of the genus , for which the name sp. nov. is proposed. The type strain is 130 (=CICC 24668=JCM 33269).

Funding
This study was supported by the:
  • Natural Science Foundation of Guangdong Province, China (Award 2018A030313985)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003726
2019-09-19
2024-05-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/1/112.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003726&mimeType=html&fmt=ahah

References

  1. Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI et al. The Actinobacteria, Part A. In Rainey FA, Kämpfer P, Vos PD, Chun J, Trujillo ME et al. Bergey's Manual of Systematic Bacteriology New York: Springer; 2012
    [Google Scholar]
  2. Prauser H.. Nocardioides, a new genus of the order Actinomycetales . Int J Syst Evol Microbiol 1976; 26:58–65
    [Google Scholar]
  3. Urzi C, Salamone P, Schumann P, Stackebrandt E. Marmoricola aurantiacus gen. nov., sp. nov., a coccoid member of the family Nocardioidaceae isolated from a marble statue. Int J Syst Evol Microbiol 2000; 50:529–536 [View Article]
    [Google Scholar]
  4. Yoon JH, Park YH. The genus Nocardioides . In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stacke E et al. The Prokaryotes, 3rd ed. vol. 4 New York: Springer; 2006 pp. 1099–1113 p.
    [Google Scholar]
  5. Yamamura H, Ohkubo S-Y, Nakagawa Y, Ishida Y, Hamada M et al. Nocardioides iriomotensis sp. nov., an actinobacterium isolated from forest soil. Int J Syst Evol Microbiol 2011; 61:2205–2209 [View Article]
    [Google Scholar]
  6. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  7. Chun J, Goodfellow M. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 1995; 45:240–245 [View Article]
    [Google Scholar]
  8. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester, West Sussex, England: John Wiley & Sons; 1991 pp. 125–175
    [Google Scholar]
  9. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article]
    [Google Scholar]
  10. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  11. Thompson J, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article]
    [Google Scholar]
  12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425
    [Google Scholar]
  13. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  14. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  15. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  16. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993[PubMed]
    [Google Scholar]
  17. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  18. Ruan JS, Huang Y. Identification and Classification System on Actinomycete Strains Beijing: Science Press; 2011
    [Google Scholar]
  19. Evtushenko LI, Krausova VI, Yoon JH. Genus I. Nocardioides . In Whitman WB. (editor) Bergey’s Anual of Systematics of Archaea and Bacteria New York: John Wiley & Sons, Ltd; 2015
    [Google Scholar]
  20. Trujillo ME, Kroppenstedt RM, Schumann P, Martínezmolina E. Kribbella lupini sp. nov., isolated from the roots of Lupinus angustifolius . Int J Syst Evol Microbiol 2006; 56:407–411 [View Article]
    [Google Scholar]
  21. Evtushenko LI, Ariskina EV. Family II. Nocardioidaceae . In Whitman WB. (editor) Bergeydioidaceae New York: John Wiley & Sons, Ltd; 2015
    [Google Scholar]
  22. Collins MD, Dorsch M, Stackebrandt E. Transfer of Pimelobacter tumescens to Terrabacter gen. nov. as Terrabacter tumescens comb. nov. and of Pimelobacter jensenii to Nocardioides as Nocardioides jensenii comb. nov. Int J Syst Bacteriol 1989; 39:1–6 [View Article]
    [Google Scholar]
  23. Woo S-G, Srinivasan S, Yang J, Jung Y-A, Kim MK et al. Nocardioides daejeonensis sp. nov., a denitrifying bacterium isolated from sludge in a sewage-disposal plant. Int J Syst Evol Microbiol 2012; 62:1199–1203 [View Article]
    [Google Scholar]
  24. Evtushenko LI. Genus V. Marmoricola . In Whitman WB. (editor) Bergeyricola New York: John Wiley & Sons, Ltd; 2015
    [Google Scholar]
  25. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI Inc; 2001
    [Google Scholar]
  26. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  27. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477
    [Google Scholar]
  28. Schleifer KH. Analysis of the chemical composition and primary structure of murein. Methods Microbiol 1985; 18:123–156
    [Google Scholar]
  29. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, DE Minnikin. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp. 267–287 p.
    [Google Scholar]
  30. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  31. Romano I, Nicolaus B, Lama L, Trabasso D, Caracciolo G et al. Accumulation of osmoprotectants and lipid pattern modulation in response to growth conditions by Halomonas pantelleriense . Syst Appl Microbiol 2001; 24:342–352 [View Article]
    [Google Scholar]
  32. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  33. Ley JD, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article]
    [Google Scholar]
  34. Huss VAR, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4:184–192 [View Article]
    [Google Scholar]
  35. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  36. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  37. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article]
    [Google Scholar]
  38. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article]
    [Google Scholar]
  39. Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article]
    [Google Scholar]
  40. Pitt A, Schmidt J, Lang E, Whitman WB, Woyke T et al. Polynucleobacter meluiroseus sp. nov., a bacterium isolated from a lake located in the mountains of the Mediterranean island of Corsica. Int J Syst Evol Microbiol 2018; 68:1975–1985 [View Article]
    [Google Scholar]
  41. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2017; 30: [View Article]
    [Google Scholar]
  42. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [View Article]
    [Google Scholar]
  43. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article]
    [Google Scholar]
  44. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  45. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003726
Loading
/content/journal/ijsem/10.1099/ijsem.0.003726
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error