1887

Abstract

Symptoms of phytoplasma infection were observed in different weed species, , , and , collected from diverse geographical regions in Argentina. To confirm the association of phytoplasma infection with symptomatic plants, PCR, RFLP and phylogenetic analyses based on 16S rRNA-encoding sequences were performed. In this work, we report the presence of phytoplasmas from group 16SrVII (subgroup 16VII-B) infecting and and from group 16SrIII (subgroup 16SrIII-X) , , and . Phytoplasmas from the aster yellows group were detected infecting and . Analysis of 16S rRNA-encoding genes revealed the presence of two distinct operons, (16SrI-B) and newly described , which is different from the reference RFLP patterns of all previously established 16SrI-subgroups. A single operon sequence analysis reveals the presence of simple infection and confirms a description of a novel subgroup. On the basis of these results we propose a designation of new subgroup 16SrI-(B/AJ) AJ (-AJ). To our knowledge, this is the first report of phytoplasmas infecting ¸ and .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003704
2020-01-10
2020-01-27
Loading full text...

Full text loading...

References

  1. Lee IM, Davis RE, Gundersen-Rindal DE. Phytoplasma: phytopathogenic mollicutes. Annu Rev Microbiol 2000;54:221–255 [CrossRef]
    [Google Scholar]
  2. Bertaccini A, Duduk B, Paltrinieri S, Contaldo N. Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. Am J Plant Sci 2014;05:1763–1788 [CrossRef]
    [Google Scholar]
  3. Weintraub PG, Beanland L. Insect vectors of phytoplasmas. Annu Rev Entomol 2006;51:91–111 [CrossRef]
    [Google Scholar]
  4. Zhao Y, Davis RE, Wei W, Lee IM. Should 'Candidatus Phytoplasma' be retained within the order Acholeplasmatales?. Int J Syst Evol Microbiol 2015;65:1075–1082 [CrossRef]
    [Google Scholar]
  5. Lee I, Gundersen-rindal DE, Davis RE, Bartoszyk IM. Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences between distinct groups were 90 % or below. by including additional groups 16S rDNA sequence data were available to predict restriction. Int J Syst Bacteriol 1998;1153–1169
    [Google Scholar]
  6. Zhao Y, Wei W, Lee I-M, Shao J, Suo X et al. Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). Int J Syst Evol Microbiol 2009;59:2582–2593 [CrossRef]
    [Google Scholar]
  7. Naderali N, Nejat N, Vadamalai G, Davis RE, Wei W et al. 'Candidatus Phytoplasma wodyetiae', a new taxon associated with yellow decline disease of foxtail palm (Wodyetia bifurcata) in Malaysia. Int J Syst Evol Microbiol 2017;67:3765–3772 [CrossRef]
    [Google Scholar]
  8. Conci L, Pons AS, Guzmán F, Fernández F, Galdeano E.Advances in knowledge about phytoplasma diseases in Argentina In Bertaccini A. editor Phytoplasmas and Phytoplasma Diseases Management: How to Reduce Their Economic Impact Bologna: Bologna, Italia; 2014; pp82–89
    [Google Scholar]
  9. Fernández FD, Marini D, Farrando R, Conci LR. First report of a ‘Candidatus Phytoplasma pyri’ strain in Argentina. Australas Plant Dis Notes 2017;12:2014–2017 [CrossRef]
    [Google Scholar]
  10. Montano HG, Davis RE, Dally EL, Hogenhout S, Pimentel JP et al. 'Candidatus Phytoplasma brasiliense', a new phytoplasma taxon associated with hibiscus witches' broom disease. Int J Syst Evol Microbiol 2001;51:1109–1118 [CrossRef]
    [Google Scholar]
  11. Galdeano E, Guzmán FA, Fernández F, Conci LR. Genetic diversity of 16SrIII group phytoplasmas in Argentina. predominance of subgroups 16SrIII-J and B and two new subgroups 16SrIII-W and X. Eur J Plant Pathol 2013;137:753–764 [CrossRef]
    [Google Scholar]
  12. Fernández FD, Galdeano E, Kornowski MV, Arneodo JD, Conci LR. Description of 'Candidatus Phytoplasma meliae', a phytoplasma associated with chinaberry (Melia azedarach L.) yellowing in South America. Int J Syst Evol Microbiol 2016;66:5244–5251 [CrossRef]
    [Google Scholar]
  13. Pérez-López E, Luna-Rodríguez M, Olivier CY, Dumonceaux TJ. The underestimated diversity of phytoplasmas in Latin America. Int J Syst Evol Microbiol 2016;66:492–513 [CrossRef]
    [Google Scholar]
  14. Meneguzzi NG, Torres LE, Galdeano E, Guzman FA, Nome SF et al. Molecular characterization of a phytoplasma of the ash yellows group (16Sr VII-B) occurring in Artemisia annua and Conyza bonariensis weeds. AgriScientia 2008;25:7–15
    [Google Scholar]
  15. Catalano MI. Cicadélidos vectores de fitoplasmas a cultivos de importancia económica en la argentina sistemática y bioecología (Insecta- Auchenorrhyncha- Cicadellidae). Tesis Dr 2011;134:
    [Google Scholar]
  16. Fiore N, Longone V, González X, Zamorano A, Pino AM et al. Transmission of 16SrIII-J phytoplasma by Paratanus exitiosus (Beamer) leafhopper in grapevine. Phytopathogenic Mollicutes 2015;5:S43–44 [CrossRef]
    [Google Scholar]
  17. Perilla-Henao LM. Determination of Phytoplasma Transmission Capacity in Two Morphospecies of the Family Cicadellidae (Hemiptera: Auchenorryncha) from Bogotá, Colombia Universidad Nacional de Colombia, PhD Thesis; 2013; p156
    [Google Scholar]
  18. Kreyci PF, Eckstein B, Lopes JRS, Ferreira J, Bedendo IP. Transmission of “Candidatus Phytoplasma pruni”-related strain associated with broccoli stunt by four species of leafhoppers. J Phytopathol 2018;166:502–505 [CrossRef]
    [Google Scholar]
  19. Meneguzzi N. Caracterización molecular, taxonomía y diagnóstico de fitoplasmas del grupo Ash Yellows (VII) [PhD thesis]. Tesis Dr FCEFyN, Universidad Nacional de Córdoba; Córdoba, Argentina: 2009. 147pp
    [Google Scholar]
  20. Doyle JJ, Doyle JL. Isolation of plant DNA from fresh tissue. Focus 1990;12:13–15
    [Google Scholar]
  21. Deng S, Hiruki C. Amplification of 16S rRNA genes from culturable and nonculturable mollicutes. J Microbiol Methods 1991;14:53–61 [CrossRef]
    [Google Scholar]
  22. Gundersen D, Lee I. Ultrasensitive by nested-PCR assays detection of phytoplasmas using two universal primer pairs. Mediterr Phytopathol Union Firenze Univ Press 1996;35:144–151
    [Google Scholar]
  23. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef]
    [Google Scholar]
  24. Flôres D, Amaral Mello APdeO, Pereira TBC, Rezende JAM, Bedendo IP. A novel subgroup 16SrVII-D phytoplasma identified in association with erigeron witches' broom. Int J Syst Evol Microbiol 2015;65:2761–2765 [CrossRef]
    [Google Scholar]
  25. da Silva Fugita JM, Pereira TBC, Banzato TC, Kitajima EW, da Souto ER et al. Molecular characterization of a phytoplasma affiliated with the 16SrVII group representative of the novel 16SrVII-F subgroup. Int J Syst Evol Microbiol 2017;67:3122–3126 [CrossRef]
    [Google Scholar]
  26. Barros TSL, Davis RE, Resende RO, Dally EL. Erigeron witches'-broom phytoplasma in Brazil represents new subgroup VII-B in 16S rRNA gene group VII, the ash yellows phytoplasma group. Plant Dis 2002;86:1142–1148 [CrossRef]
    [Google Scholar]
  27. Pereira TBC, Dally EL, Davis RE, Banzato TC, Galvão SR et al. Cauliflower is a new host of a subgroup 16SrVII-B phytoplasma associated with stunting disease in Brazil. Plant Dis 2016;100:1007 [CrossRef]
    [Google Scholar]
  28. Pereira TBC, Dally EL, Davis RE, Banzato TC, Bedendo IP. Ming Aralia (Polyscias fruticose), a new host of a Phytoplasma subgroup 16SrVII-B strain in Brazil. Plant Disease 2016;100:645 [CrossRef]
    [Google Scholar]
  29. Troiani HO, Stiebel PE, Aschemacher A. Reconocimiento de malezas: región subhúmeda y semiárida pampeana. Colegio de ingenieros agrónomos de La Pampa. Santa Rosa. La Pampa. Argentina 2008
    [Google Scholar]
  30. Fernández FD, Conci VC, Kirschbaum DS, Conci LR. Molecular characterization of a phytoplasma of the ash yellows group occurring in strawberry (Fragaria x ananassa Duch.) plants in Argentina. Eur J Plant Pathol 2013;135:1–4 [CrossRef]
    [Google Scholar]
  31. Gajardo A, Fiore N, Prodan S, Paltrinieri S, Botti S et al. Phytoplasmas associated with grapevine yellows disease in Chile. Plant Dis 2009;93:789–796 [CrossRef]
    [Google Scholar]
  32. Franco-Lara L, Contaldo N, Mejia JF, Paltrinieri S, Duduk B et al. Detection and identification of phytoplasmas associated with declining Liquidambar styraciflua trees in Colombia. Trop Plant Pathol 2017;42:352–361 [CrossRef]
    [Google Scholar]
  33. Fernández FD, Meneguzzi NG, Conci LR. Identification of three novel subgroups within the X-disease group phytoplasma associated with strawberry redness disease. Int J Syst Evol Microbiol 2017;67:753–758 [CrossRef]
    [Google Scholar]
  34. Torres L, Galdeano E, Fernandez F, Meneguzzi N, Conci L. Establishment of the new subgroup 16SrI-S (rr-rp) tuf-H belonging to ‘ca. phytoplasma asteris’ in wild and cultivated plants in Argentina. J Plant Pathol 2011;93:311–320
    [Google Scholar]
  35. Martini M, Lee IM, Bottner KD, Zhao Y, Botti S et al. Ribosomal protein gene-based phylogeny for finer differentiation and classification of phytoplasmas. Int J Syst Evol Microbiol 2007;57:2037–2051 [CrossRef]
    [Google Scholar]
  36. Jomantiene R, Zhao Y, Lee IM, Davis RE. Phytoplasmas infecting sour cherry and lilac represent two distinct lineages having close evolutionary affinities with clover phyllody phytoplasma. Eur J Plant Pathol 2011;130:97–107 [CrossRef]
    [Google Scholar]
  37. Perez-Lopez E, Vincent C, Moreau D, Hammond C, Town J et al. A novel ‘Candidatus Phytoplasma asteris’ subgroup 16SrI-(E/AI)AI associated with blueberry stunt disease in eastern Canada. Int J Syst Evol Microbiol 2018;60:60 [CrossRef]
    [Google Scholar]
  38. Panero JL, Funk VA. The value of sampling anomalous taxa in phylogenetic studies: major clades of the Asteraceae revealed. Mol Phylogenet Evol 2008;47:757–782 [CrossRef]
    [Google Scholar]
  39. Duduk B, Stepanovi J, Yadav A, Rao GP.Phytoplasmas in Weeds and Wild Plants In Rao G, Bertaccini A, Fiore N, Liefting L. (editors) Phytoplasmas: Plant Pathogenic Bacteria - I Singapore: Springer; 2018
    [Google Scholar]
  40. Imo M, Maixner M, Johannesen J. Sympatric diversification vs. immigration: deciphering host-plant specialization in a polyphagous insect, the stolbur phytoplasma vector Hyalesthes obsoletus (Cixiidae). Mol Ecol 2013;22:2188–2203 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003704
Loading
/content/journal/ijsem/10.1099/ijsem.0.003704
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error