1887

Abstract

Three prokaryotic predator strains, BL9, BL10 and BL28, were isolated with from coastal seawater of PR China. Cells of the strains were Gram-negative, vibrioid-shaped and motile with a single sheathed flagellum (25–28 nm wide). Cells were around 0.3×0.5–1.0 µm in size. The three strains were obligate predators that exhibited a biphasic life cycle: a free-swimming attack phase and an intraperiplasmic growth phase within the prey. Bdelloplasts were formed. NaCl was required for growth. Optimum growth occurred at ~37 °C, with 2–4 % (w/v) NaCl and at pH 7.0–8.0. The results of phylogenetic analyses based on 16S rRNA gene sequences indicated that the three strains shared 99.9 % similarity to each other, were affiliated with the genus in the class , and represented the same new species. Strain BL9 (=MCCC 1K03527=JCM 32962) was designated as the type strain. Genome sequencing of strain BL9 revealed a genome size of 3.14 Mb and a G+C content of 35.8 mol%. The estimated digital DNA–DNA hybridization (dDDH) values and the whole genome average nucleotide identity (gANI) values between the genome of strain BL9 and those of and were 12.5–19 and 63.49–76.15 %, respectively. On the basis of life cycle features, results of physiological analyses, gANI data and dDDH data, strain BL9 represents a new species within the genus , for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003703
2019-09-09
2019-09-19
Loading full text...

Full text loading...

References

  1. Snyder AR, Williams HN, Baer ML, Walker KE, Stine OC. 16S rDNA sequence analysis of environmental Bdellovibrio-and-like organisms (BALO) reveals extensive diversity. Int J Syst Evol Microbiol 2002;52:2089–2094 [CrossRef][PubMed]
    [Google Scholar]
  2. Hahn MW, Schmidt J, Koll U, Rohde M, Verbarg S et al. Silvanigrella aquatica gen. nov., sp. nov., isolated from a freshwater lake, description of Silvanigrellaceae fam. nov. and Silvanigrellales ord. nov., reclassification of the order Bdellovibrionales in the class Oligoflexia, reclassification of the families Bacteriovoracaceae and Halobacteriovoraceae in the new order Bacteriovoracales ord. nov., and reclassification of the family Pseudobacteriovoracaceae in the order Oligoflexales. Int J Syst Evol Microbiol 2017;67:2555–2568 [CrossRef][PubMed]
    [Google Scholar]
  3. Wang Z, Kadouri DE, Wu M. Genomic insights into an obligate epibiotic bacterial predator: Micavibrio aeruginosavorus ARL-13. BMC Genomics 2011;12:453 [CrossRef]
    [Google Scholar]
  4. Koval SF, Hynes SH, Flannagan RS, Pasternak Z, Davidov Y et al. Bdellovibrio exovorus sp. nov., a novel predator of Caulobacter crescentus. Int J Syst Evol Microbiol 2013;63:146–151 [CrossRef][PubMed]
    [Google Scholar]
  5. Christensen H, Bisgaard M, Frederiksen W, Mutters R, Kuhnert P et al. Is characterization of a single isolate sufficient for valid publication of a new genus or species? Proposal to modify Recommendation 30b of the Bacteriological Code (1990 Revision). Int J Syst Evol Microbiol 2001;51:2221–2225 [CrossRef][PubMed]
    [Google Scholar]
  6. Li N, Williams HN. 454 Pyrosequencing reveals diversity of Bdellovibrio and like organisms in fresh and salt water. Antonie van Leeuwenhoek 2015;107:305–311 [CrossRef][PubMed]
    [Google Scholar]
  7. Kandel PP, Pasternak Z, van Rijn J, Nahum O, Jurkevitch E. Abundance, diversity and seasonal dynamics of predatory bacteria in aquaculture zero discharge systems. FEMS Microbiol Ecol 2014;89:149–161 [CrossRef][PubMed]
    [Google Scholar]
  8. Linares-Otoya L, Linares-Otoya V, Armas-Mantilla L, Blanco-Olano C, Crüsemann M et al. Diversity and antimicrobial potential of predatory bacteria from the Peruvian Coastline. Mar Drugs 2017;15:308–321 [CrossRef][PubMed]
    [Google Scholar]
  9. Liu MY, Kjelleberg S, Thomas T. Functional genomic analysis of an uncultured δ-proteobacterium in the sponge Cymbastela concentrica. Isme J 2011;5:427–435 [CrossRef][PubMed]
    [Google Scholar]
  10. Koval SF, Williams HN, Stine OC. Reclassification of Bacteriovorax marinus as Halobacteriovorax marinus gen. nov., comb. nov. and Bacteriovorax litoralis as Halobacteriovorax litoralis comb. nov.; description of Halobacteriovoraceae fam. nov. in the class Deltaproteobacteria. Int J Syst Evol Microbiol 2015;65:593–597 [CrossRef][PubMed]
    [Google Scholar]
  11. Piñeiro SA, Williams HN, Stine OC. Phylogenetic relationships amongst the saltwater members of the genus Bacteriovorax using rpoB sequences and reclassification of Bacteriovorax stolpii as Bacteriolyticum stolpii gen. nov., comb. nov. Int J Syst Evol Microbiol 2008;58:1203–1209 [CrossRef][PubMed]
    [Google Scholar]
  12. Pineiro SA, Stine OC, Chauhan A, Steyert SR, Smith R et al. Global survey of diversity among environmental saltwater Bacteriovoracaceae. Environ Microbiol 2007;9:2441–2450 [CrossRef][PubMed]
    [Google Scholar]
  13. Stolp H, Starr MP. Bdellovibrio bacteriovorus gen. et sp. n., a predatory, ectoparasitic, and bacteriolytic microorganism. Antonie van Leeuwenhoek 1963;29:217–248 [CrossRef][PubMed]
    [Google Scholar]
  14. Schoeffield AJ, Williams HN. Efficiencies of recovery of Bdellovibrios from brackish- water environments by using various bacterial species as prey. Appl Environ Microbiol 1990;56:230–236[PubMed]
    [Google Scholar]
  15. Chen H, Young S, Berhane TK, Williams HN. Predatory Bacteriovorax communities ordered by various prey species. PLoS One 2012;7:e34174 [CrossRef][PubMed]
    [Google Scholar]
  16. Strauch E, Schwudke D, Linscheid M. Predatory mechanisms of Bdellovibrio and like organisms. Future Microbiol 2007;2:63–73 [CrossRef][PubMed]
    [Google Scholar]
  17. Sockett RE. Predatory lifestyle of Bdellovibrio bacteriovorus. Annu Rev Microbiol 2009;63:523–539 [CrossRef][PubMed]
    [Google Scholar]
  18. Enos BG, Anthony MK, Degiorgis JA, Williams LE. Prey range and genome evolution of Halobacteriovorax marinus predatory bacteria from an estuary. mSphere 2018;3:e0050800517 [CrossRef][PubMed]
    [Google Scholar]
  19. Li H, Liu C, Chen L, Zhang X, Cai J. Biological characterization of two marine Bdellovibrio-and-like organisms isolated from Daya bay of Shenzhen, China and their application in the elimination of Vibrio parahaemolyticus in oyster. Int J Food Microbiol 2011;151:36–43 [CrossRef][PubMed]
    [Google Scholar]
  20. Delong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992;89:5685–5689 [CrossRef][PubMed]
    [Google Scholar]
  21. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  22. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  23. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  24. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  25. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  26. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  27. Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016;44:6614–6624 [CrossRef]
    [Google Scholar]
  28. Schwudke D, Strauch E, Krueger M, Appel B. Taxonomic studies of predatory Bdellovibrios based on 16S rRNA analysis, ribotyping and the hit locus and characterization of isolates from the gut of animals. Syst Appl Microbiol 2001;24:385–394 [CrossRef][PubMed]
    [Google Scholar]
  29. Baer ML, Ravel J, Piñeiro SA, Guether-Borg D, Williams HN. Reclassification of salt-water Bdellovibrio sp. as Bacteriovorax marinus sp. nov. and Bacteriovorax litoralis sp. nov. Int J Syst Evol Microbiol 2004;54:1011–1016 [CrossRef][PubMed]
    [Google Scholar]
  30. Baer ML, Ravel J, Chun J, Hill RT, Williams HN. A proposal for the reclassification of Bdellovibrio stolpii and Bdellovibrio starrii into a new genus, Bacteriovorax gen. nov. as Bacteriovorax stolpii comb. nov. and Bacteriovorax starrii comb. nov., respectively. Int J Syst Evol Microbiol 2000;50 Pt 1:219–224 [CrossRef][PubMed]
    [Google Scholar]
  31. Mccauley EP, Haltli B, Kerr RG. Description of Pseudobacteriovorax antillogorgiicola gen. nov., sp. nov., a bacterium isolated from the gorgonian octocoral Antillogorgia elisabethae, belonging to the family Pseudobacteriovoracaceae fam. nov., within the order Bdellovibrionales. Int J Syst Evol Microbiol 2015;65:522–530 [CrossRef][PubMed]
    [Google Scholar]
  32. Davidov Y, Jurkevitch E. Diversity and evolution of Bdellovibrio-and-like organisms (BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov., and description of the Bacteriovorax-Peredibacter clade as Bacteriovoracaceae fam. nov. Int J Syst Evol Microbiol 2004;54:1439–1452 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003703
Loading
/content/journal/ijsem/10.1099/ijsem.0.003703
Loading

Data & Media loading...

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error