1887

Abstract

A Gram-stain-negative, aerobic, non-motile, rod-shaped, cold-tolerant bacterium, designated F01003, was isolated from soil sampled near Happiness Bay on the west coast of Antarctica. Strain F01003 was found to grow at 4–30 °C (optimum, 25 °C), pH 5.5–8.0 (pH 6.5–7.0) and in the presence of 0–1 % NaCl (0 %, w/v). Cells were oxidase-positive and catalase-positive. Strain F01003 contained menaquinone 7 (MK-7) as the predominant respiratory quinone. The main cellular fatty acids included summed feature 3 (Cω6 and/or Cω7) and iso-C. Phosphatidylethanolamine and an unidentified aminolipid were identified as the major polar lipids. The DNA G+C content of strain F01003 was 44.8 mol%. Phylogenetic analysis of the nearly full-length 16S rRNA gene sequence revealed that strain F01003 was most closely related to the genus and exhibited the highest sequence similarity to LMG 29118 (97.3 %). On the basis of the evidence presented in this polyphasic taxonomic study, strain F01003 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is F01003 (=KCTC 62991=CCTCC AB 2019023).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003702
2019-12-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/12/3885.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003702&mimeType=html&fmt=ahah

References

  1. Pankratov TA, Tindall BJ, Liesack W, Dedysh SN. Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Microbiol 2007; 57:2349–2354 [View Article]
    [Google Scholar]
  2. Urai M, Aizawa T, Nakagawa Y, Nakajima M, Sunairi M. Mucilaginibacter kameinonensis sp., nov., isolated from garden soil. Int J Syst Evol Microbiol 2008; 58:2046–2050 [View Article]
    [Google Scholar]
  3. Baik KS, Park SC, Kim EM, Lim CH, Seong CN. Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter . Int J Syst Evol Microbiol 2010; 60:134–139 [View Article]
    [Google Scholar]
  4. Huq MA, Akter S, Lee S-Y. Mucilaginibacter formosus sp. nov., a bacterium isolated from road-side soil. Antonie van Leeuwenhoek 2019; 112:513–521 [View Article]
    [Google Scholar]
  5. Deng Y, Shen L, Xu B, Liu Y, Gu Z et al. Mucilaginibacter psychrotolerans sp. nov., isolated from peatlands. Int J Syst Evol Microbiol 2017; 67:767–771 [View Article]
    [Google Scholar]
  6. Aydogan EL, Busse HJ, Moser G, Müller C, Kämpfer P et al. Proposal of Mucilaginibacter phyllosphaerae sp. nov. isolated from the phyllosphere of Galium album . Int J Syst Evol Microbiol 2016; 66:4138–4147
    [Google Scholar]
  7. Zheng RC, Zhao YM, Wang LQ, Chang XL, Zhang YM et al. Mucilaginibacter antarcticus sp. nov., isolated from tundra soil. Int J Syst Evol Microbiol 2016; 66:5140–5144
    [Google Scholar]
  8. Chen W-M, Hsieh T-Y, Sheu S-Y. Mucilaginibacter amnicola sp. nov., isolated from a freshwater creek. Int J Syst Evol Microbiol 2018; 68:394–401 [View Article]
    [Google Scholar]
  9. Kim Y-O, Park S, Nam B-H, Kang S-J, Hur YB et al. Ruegeria halocynthiae sp. nov., isolated from the sea squirt Halocynthia roretzi . Int J Syst Evol Microbiol 2012; 62:925–930 [View Article]
    [Google Scholar]
  10. Yoon SH, Sm H, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617
    [Google Scholar]
  11. Thompson J, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article]
    [Google Scholar]
  12. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425
    [Google Scholar]
  14. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  15. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  16. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  17. Si N, Kim YO, Yoon SH, Ha S, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285
    [Google Scholar]
  18. Lee I, Chalita M, Ha SM, Na SI, Yoon SH et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article][PubMed]
    [Google Scholar]
  19. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article]
    [Google Scholar]
  20. Cheng Y, Mcnamara DE, Miley MJ, Nash RP, Redinbo MR. Functional characterization of the multidomain F plasmid trai relaxase-helicase. J Biol Chem 2011; 286:12670–12682 [View Article]
    [Google Scholar]
  21. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  22. Yoon S-H, Ha S-Min, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  23. Rodriguezr LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. Peer J Prepr 2016:e1900v1
    [Google Scholar]
  24. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  25. Smibert RM, Krieg NR. Phenotypic characterization. In Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; pp. 607–654
    [Google Scholar]
  26. Aygan A, Arikan B. An overview on bacterial motility detection. Int J Agr Biol 2007; 9:193–196
    [Google Scholar]
  27. Xia HF, Li XL, Liu QQ, Miao TT, du ZJ et al. Salegentibacter echinorum sp. nov., isolated from the sea urchin Hemicentrotus pulcherrimus . Antonie van Leeuwenhoek 2013; 104:315–320 [View Article][PubMed]
    [Google Scholar]
  28. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  29. Zj D, Wang Y, Dunlap C, Rooney AP, Chen GJ. Draconibacterium orientale gen. nov., sp. nov., isolated from two distinct marine environments, and proposal of Draconibacteriaceae fam. nov. Int J Syst Evol Microbiol 2014; 64:1690–1696
    [Google Scholar]
  30. CLSI Performance Standards for Antimicrobial Susceptibility Testing, 28th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2018
    [Google Scholar]
  31. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI, Inc; 1990
    [Google Scholar]
  32. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  33. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–469 [View Article]
    [Google Scholar]
  34. Tang JW, Huang J, Qiao ZX, Wang R, Wang GJ. Mucilaginibacter pedocola sp. nov., isolated from a heavy-metal-contaminated paddy field. Int J Syst Evol Microbiol 2016; 66:4033–4038
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003702
Loading
/content/journal/ijsem/10.1099/ijsem.0.003702
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error