1887

Abstract

The genus belongs to the family However, many species with the genus name are found in different families and even crossing into a different phylum. Motivated by recently completed genome sequences, we propose the reclassification of two separate clades that include misclassified species which phylogenetically lie within the family , known for being benign members of gut microbiomes and for their plant-degrading capabilities. We use several phylogenetic and phylogenomic perspectives as well as phenotypic comparisons to gain insight into the evolutionary history of these taxa. One clade, which includes , , , , and , we propose to reclassify as gen. nov., and reclassify the species as comb. nov., comb. nov., comb. nov., comb. nov., comb. nov. and comb. nov. The other clade comprises , , , , , , , and , and we propose to reclassify it as gen. nov., including reclassification of the members as comb. nov., comb. nov., comb. nov., comb. nov., comb. nov., comb. nov., comb. nov. and comb. nov. We emend the description of to reflect that it is a later heterotypic synonym of , which we have reclassified as .

Funding
This study was supported by the:
  • National Science Foundation (Award NEAGEP Fellowship)
  • National Science Foundation (Award ICE-IGERT Fellowship)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003698
2019-11-29
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/1/23.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003698&mimeType=html&fmt=ahah

References

  1. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 1994; 44:812–826 [View Article][PubMed]
    [Google Scholar]
  2. Lawson PA, Rainey FA. Proposal to restrict the genus Clostridium Prazmowski to Clostridium butyricum and related species. Int J Syst Evol Microbiol 2016; 66:1009–1016 [View Article][PubMed]
    [Google Scholar]
  3. Stackebrandt E, Kramer I, Swiderski J, Hippe H. Phylogenetic basis for a taxonomic dissection of the genus Clostridium . FEMS Immunol Med Microbiol 1999; 24:253–258 [View Article][PubMed]
    [Google Scholar]
  4. Yutin N, Galperin MY. A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. Environ Microbiol 2013; 15:: 2631––2641 [View Article][PubMed]
    [Google Scholar]
  5. Amir I, Bouvet P, Legeay C, Gophna U, Weinberger A et al. Eisenbergiella tayi gen. nov., sp. nov., isolated from human blood. Int J Syst Evol Microbiol 2014; 64:907–914 [View Article][PubMed]
    [Google Scholar]
  6. Broda DM, Saul DJ, Bell RG, Musgrave DR. Clostridium algidixylanolyticum sp. nov., a psychrotolerant, xylan-degrading, spore-forming bacterium. Int J Syst Evol Microbiol 2000; 50:623–631 [View Article][PubMed]
    [Google Scholar]
  7. Cai S, Dong X. Cellulosilyticum ruminicola gen. nov., sp. nov., isolated from the rumen of yak, and reclassification of Clostridium lentocellum as Cellulosilyticum lentocellum comb. nov. Int J Syst Evol Microbiol 2010; 60:845–849 [View Article][PubMed]
    [Google Scholar]
  8. Carlier JP, K'ouas G, Han XY. Moryella indoligenes gen. nov., sp. nov., an anaerobic bacterium isolated from clinical specimens. Int J Syst Evol Microbiol 2007; 57:725–729 [View Article][PubMed]
    [Google Scholar]
  9. Carlier JP, K'ouas G, Bonne I, Lozniewski A, Mory F et al. Oribacterium sinus gen. nov., sp. nov., within the family 'Lachnospiraceae' (phylum Firmicutes). Int J Syst Evol Microbiol 2004; 54:1611–1615 [View Article][PubMed]
    [Google Scholar]
  10. Clavel T, Lippman R, Gavini F, Doré J, Blaut M et al. Clostridium saccharogumia sp. nov. and Lactonifactor longoviformis gen. nov., sp. nov., two novel human faecal bacteria involved in the conversion of the dietary phytoestrogen secoisolariciresinol diglucoside. Syst Appl Microbiol 2007; 30:16–26 [View Article][PubMed]
    [Google Scholar]
  11. Cook AR, Riley PW, Murdoch H, Evans PN, Mcdonald IR et al. Howardella ureilytica gen. nov., sp. nov., a Gram-positive, coccoid-shaped bacterium from a sheep rumen. Int J Syst Evol Microbiol 2007; 57:2940–2945 [View Article][PubMed]
    [Google Scholar]
  12. Cotta MA, Whitehead TR, Falsen E, Moore E, Lawson PA et al. Robinsoniella peoriensis gen. nov., sp. nov., isolated from a swine-manure storage pit and a human clinical source. Int J Syst Evol Microbiol 2009; 59:150–155 [View Article][PubMed]
    [Google Scholar]
  13. Domingo MC, Huletsky A, Boissinot M, Helie MC, Bernal A et al. Clostridium lavalense sp. nov., a glycopeptide-resistant species isolated from human faeces. Int J Syst Evol Microbiol 2009; 59:498–503 [View Article]
    [Google Scholar]
  14. Downes J, Munson MA, Radford DR, Spratt DA, Wade WG et al. Shuttleworthia satelles gen. nov., sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol 2002; 52:1469–1475 [View Article][PubMed]
    [Google Scholar]
  15. Duncan SH, Aminov RI, Scott KP, Louis P, Stanton TB et al. Proposal of Roseburia faecis sp. nov., Roseburia hominis sp. nov. and Roseburia inulinivorans sp. nov., based on isolates from human faeces. Int J Syst Evol Microbiol 2006; 56:2437–2441 [View Article][PubMed]
    [Google Scholar]
  16. Duncan SH, Hold GL, Barcenilla A, Stewart CS, Flint HJ et al. Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int J Syst Evol Microbiol 2002; 52:1615–1620 [View Article][PubMed]
    [Google Scholar]
  17. Eeckhaut V, van Immerseel F, Pasmans F, de Brandt E, Haesebrouck F et al. Anaerostipes butyraticus sp. nov., an anaerobic, butyrate-producing bacterium from Clostridium cluster XIVa isolated from broiler chicken caecal content, and emended description of the genus Anaerostipes . Int J Syst Evol Microbiol 2010; 60:1108–1112 [View Article][PubMed]
    [Google Scholar]
  18. Furuya H, Ide Y, Hamamoto M, Asanuma N, Hino T et al. Isolation of a novel bacterium, Blautia glucerasei sp. nov., hydrolyzing plant glucosylceramide to ceramide. Arch Microbiol 2010; 192:365–372 [View Article][PubMed]
    [Google Scholar]
  19. Hedberg ME, Moore ER, Svensson-Stadler L, Hörstedt P, Baranov V et al. Lachnoanaerobaculum gen. nov., a new genus in the Lachnospiraceae: characterization of Lachnoanaerobaculum umeaense gen. nov., sp. nov., isolated from the human small intestine, and Lachnoanaerobaculum orale sp. nov., isolated from saliva, and reclassification of Eubacterium saburreum (Prevot 1966) Holdeman and Moore 1970 as Lachnoanaerobaculum saburreum comb. nov. Int J Syst Evol Microbiol 2012; 62:2685–2690 [View Article][PubMed]
    [Google Scholar]
  20. Jeong H, Yi H, Sekiguchi Y, Muramatsu M, Kamagata Y et al. Clostridium jejuense sp. nov., isolated from soil. Int J Syst Evol Microbiol 2004; 54:1465–1468 [View Article][PubMed]
    [Google Scholar]
  21. Kim MS, Roh SW, Bae JW. Ruminococcus faecis sp. nov., isolated from human faeces. J Microbiol 2011; 49:487–491 [View Article][PubMed]
    [Google Scholar]
  22. Kitahara M, Takamine F, Imamura T, Benno Y. Assignment of Eubacterium sp. VPI 12708 and related strains with high bile acid 7alpha-dehydroxylating activity to Clostridium scindens and proposal of Clostridium hylemonae sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2000; 50:971–978 [View Article][PubMed]
    [Google Scholar]
  23. Kläring K, Just S, Lagkouvardos I, Hanske L, Haller D et al. Murimonas intestini gen. nov., sp. nov., an acetate-producing bacterium of the family Lachnospiraceae isolated from the mouse gut. Int J Syst Evol Microbiol 2015; 65:870–878 [View Article][PubMed]
    [Google Scholar]
  24. Kopecný J, Zorec M, Mrázek J, Kobayashi Y, Marinsek-Logar R et al. Butyrivibrio hungatei sp. nov. and Pseudobutyrivibrio xylanivorans sp. nov., butyrate-producing bacteria from the rumen. Int J Syst Evol Microbiol 2003; 53:201–209 [View Article][PubMed]
    [Google Scholar]
  25. Liu C, Finegold SM, Song Y, Lawson PA. Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov. and description of Blautia wexlerae sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2008; 58:1896–1902 [View Article][PubMed]
    [Google Scholar]
  26. Lomans BP, Leijdekkers P, Wesselink JJ, Bakkes P, Pol A et al. Obligate sulfide-dependent degradation of methoxylated aromatic compounds and formation of methanethiol and dimethyl sulfide by a freshwater sediment isolate, Parasporobacterium paucivorans gen. nov., sp. nov. Appl Environ Microbiol 2001; 67:4017–4023 [View Article][PubMed]
    [Google Scholar]
  27. Mohan R, Namsolleck P, Lawson PA, Osterhoff M, Collins MD et al. Clostridium asparagiforme sp. nov., isolated from a human faecal sample. Syst Appl Microbiol 2006; 29:292–299 [View Article][PubMed]
    [Google Scholar]
  28. Park SK, Kim MS, Bae JW. Blautia faecis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2013; 63:599–603 [View Article][PubMed]
    [Google Scholar]
  29. Parshina SN, Kleerebezem R, Sanz JL, Lettinga G, Nozhevnikova AN et al. Soehngenia saccharolytica gen. nov., sp. nov. and Clostridium amygdalinum sp. nov., two novel anaerobic, benzaldehyde-converting bacteria. Int J Syst Evol Microbiol 2003; 53:1791–1799 [View Article][PubMed]
    [Google Scholar]
  30. Sakuma K, Kitahara M, Kibe R, Sakamoto M, Benno Y et al. Clostridium glycyrrhizinilyticum sp. nov., a glycyrrhizin-hydrolysing bacterium isolated from human faeces. Microbiol Immunol 2006; 50:481–485 [View Article][PubMed]
    [Google Scholar]
  31. Schwiertz A, Hold GL, Duncan SH, Gruhl B, Collins MD et al. Anaerostipes caccae gen. nov., sp. nov., a new saccharolytic, acetate-utilising, butyrate-producing bacterium from human faeces. Syst Appl Microbiol 2002; 25:46–51 [View Article][PubMed]
    [Google Scholar]
  32. Song Y, Liu C, Molitoris DR, Tomzynski TJ, Lawson PA et al. Clostridium bolteae sp. nov., isolated from human sources. Syst Appl Microbiol 2003; 26:84–89 [View Article][PubMed]
    [Google Scholar]
  33. Steer T, Collins MD, Gibson GR, Hippe H, Lawson PA et al. Clostridium hathewayi sp. nov., from human faeces. Syst Appl Microbiol 2001; 24:353–357 [View Article][PubMed]
    [Google Scholar]
  34. Taras D, Simmering R, Collins MD, Lawson PA, Blaut M et al. Reclassification of Eubacterium formicigenerans Holdeman and Moore 1974 as Dorea formicigenerans gen. nov., comb. nov., and description of Dorea longicatena sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2002; 52:423–428 [View Article][PubMed]
    [Google Scholar]
  35. Warnick TA, Methé BA, Leschine SB. Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int J Syst Evol Microbiol 2002; 52:1155–1160 [View Article][PubMed]
    [Google Scholar]
  36. Warren YA, Tyrrell KL, Citron DM, Goldstein EJ. Clostridium aldenense sp. nov. and Clostridium citroniae sp. nov. isolated from human clinical infections. J Clin Microbiol 2006; 44:2416–2422 [View Article][PubMed]
    [Google Scholar]
  37. Whitehead TR, Cotta MA, Collins MD, Lawson PA. Hespellia stercorisuis gen. nov., sp. nov. and Hespellia porcina sp. nov., isolated from swine manure storage pits. Int J Syst Evol Microbiol 2004; 54:241–245 [View Article][PubMed]
    [Google Scholar]
  38. Whitford MF, Yanke LJ, Forster RJ, Teather RM. Lachnobacterium bovis gen. nov., sp. nov., a novel bacterium isolated from the rumen and faeces of cattle. Int J Syst Evol Microbiol 2001; 51:1977–1981 [View Article][PubMed]
    [Google Scholar]
  39. van der Wielen PW, Rovers GM, Scheepens JM, Biesterveld S. Clostridium lactatifermen tans sp. nov., a lactate-fermenting anaerobe isolated from the caeca of a chicken. Int J Syst Evol Microbiol 2002; 52:921–925 [View Article][PubMed]
    [Google Scholar]
  40. Wolin MJ, Miller TL, Collins MD, Lawson PA. Formate-dependent growth and homoacetogenic fermentation by a bacterium from human feces: description of Bryantella formatexigens gen. nov., sp. nov. Appl Environ Microbiol 2003; 69:6321–6326 [View Article][PubMed]
    [Google Scholar]
  41. Ueki A, Ohtaki Y, Kaku N, Ueki K. Descriptions of Anaerotaenia torta gen. nov., sp. nov. and Anaerocolumna cellulosilytica gen. nov., sp. nov. isolated from a methanogenic reactor of cattle waste and reclassification of Clostridium aminovalericum, Clostridium jejuense and Clostridium xylanovorans as Anaerocolumna species. Int J Syst Evol Microbiol 2016; 66:2936–2943 [View Article][PubMed]
    [Google Scholar]
  42. Seo B, Yoo JE, Lee YM, Ko G. Sellimonas intestinalis gen. nov., sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2016; 66:951–956 [View Article][PubMed]
    [Google Scholar]
  43. Kaur S, Yawar M, Kumar PA, Suresh K. Hungatella effluvii gen. nov., sp. nov., an obligately anaerobic bacterium isolated from an effluent treatment plant, and reclassification of Clostridium hathewayi as Hungatella hathewayi gen. nov., comb. nov. Int J Syst Evol Microbiol 2014; 64:710–718 [View Article][PubMed]
    [Google Scholar]
  44. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article][PubMed]
    [Google Scholar]
  45. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  46. Lang JM, Darling AE, Eisen JA. Phylogeny of bacterial and archaeal genomes using conserved genes: supertrees and supermatrices. PLoS One 2013; 8:e6251062515 [View Article][PubMed]
    [Google Scholar]
  47. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  48. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:btv681 [View Article][PubMed]
    [Google Scholar]
  49. Daimon Y, Tanaka K, Watanabe K. Epidemiological study on cigar-shaped clostridia isolated in a local japanese general hospital. Kansenshogaku Zasshi 2008; 82:205–212 [View Article][PubMed]
    [Google Scholar]
  50. Fite A, Macfarlane S, Furrie E, Bahrami B, Cummings JH et al. Longitudinal analyses of gut mucosal microbiotas in ulcerative colitis in relation to patient age and disease severity and duration. J Clin Microbiol 2013; 51:849–856 [View Article][PubMed]
    [Google Scholar]
  51. Gustafsson RJ, Ohlsson B, Benoni C, Jeppsson B, Olsson C et al. Mucosa-associated bacteria in two middle-aged women diagnosed with collagenous colitis. World J Gastroenterol 2012; 18:1628–1634 [View Article][PubMed]
    [Google Scholar]
  52. Marvaud JC, Mory F, Lambert T. Clostridium clostridioforme and Atopobium minutum clinical isolates with vanB-type resistance in France. J Clin Microbiol 2011; 49:3436–3438 [View Article][PubMed]
    [Google Scholar]
  53. Matijašić BB, Obermajer T, Lipoglavšek L, Grabnar I, Avguštin G et al. Association of dietary type with fecal microbiota in vegetarians and omnivores in slovenia. Eur J Nutr 2014; 53:1051–1064 [View Article][PubMed]
    [Google Scholar]
  54. Meehan CJ, Beiko RG. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol Evol 2014; 6:703–713 [View Article][PubMed]
    [Google Scholar]
  55. Duncan SH, Louis P, Flint HJ. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 2004; 70:5810–5817 [View Article][PubMed]
    [Google Scholar]
  56. Encarnação JC, Abrantes AM, Pires AS, Botelho MF. Revisit dietary fiber on colorectal cancer: butyrate and its role on prevention and treatment. Cancer Metastasis Rev 2015; 34:465–478 [View Article][PubMed]
    [Google Scholar]
  57. van den Abbeele P, Belzer C, Goossens M, Kleerebezem M, de Vos WM et al. Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. Isme J 2013; 7:949–961 [View Article][PubMed]
    [Google Scholar]
  58. Falony G, Vlachou A, Verbrugghe K, de Vuyst L. Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 2006; 72:7835–7841 [View Article][PubMed]
    [Google Scholar]
  59. Vital M, Howe AC, Tiedje JM. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio 2014; 5:e0088914 [View Article][PubMed]
    [Google Scholar]
  60. Rogers GM, Baecker AAW. Clostridium xylanolyticum sp. nov., an anaerobic xylanolytic bacterium from decayed Pinus patula Wood Chips. Int J Syst Bacteriol 1991; 41:140–143 [View Article]
    [Google Scholar]
  61. Biddle AS, Leschine S, Huntemann M, Han J, Chen A et al. The complete genome sequence of Clostridium indolis DSM 755(T.). Stand Genomic Sci 2014; 9:1089–1104 [View Article][PubMed]
    [Google Scholar]
  62. Kaneuchi C, Watanabe K, Terada A, Benno Y, Mitsuoka T et al. Taxonomic study of Bacteroides clostridiiformis subsp. clostridiiformis (Burri and Ankersmit) Holdeman and Moore and of related organisms: proposal of Clostridium clostridiiformis (Burri and Ankersmit) comb. nov. and Clostridium symbiosum (Stevens) comb. nov. Int J Syst Bacteriol 1976; 26:195–204 [View Article]
    [Google Scholar]
  63. Bryant MP, Small N, Bouma C, Robinson I et al. Studies on the composition of the ruminal flora and fauna of young calves. J Dairy Sci 1958; 41:1747–1767 [View Article]
    [Google Scholar]
  64. Douglas SR et al. Studies in wound infections.: on the growth of anaerobic bacilli in fluid media under apparently aerobic conditions. The Lancet 1917; 190:530–532
    [Google Scholar]
  65. McClung L. Bergey’s Manual of Determinative Bacteriology Seventh, Baltimore: Williams and Wilkins; 1957
    [Google Scholar]
  66. Hall IC. Differentiation and identification of the sporulating anaerobes. J Infect Dis 1922; 30:445–504 [View Article]
    [Google Scholar]
  67. Walther R, Hippe H, Gottschalk G. Citrate, a specific substrate for the isolation of Clostridium sphenoides . Appl Environ Microbiol 1977; 33:955–962[PubMed]
    [Google Scholar]
  68. van Gylswyk NO, van der Toorn JJTK. Clostridium aerotolerans sp. nov., a xylanolytic bacterium from corn stover and from the rumina of sheep fed corn stover. Int J Syst Bacteriol 1987; 37:102–105 [View Article]
    [Google Scholar]
  69. Palop MLL, Valles S, Pinaga F, Flors A et al. Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium celerecrescens sp. nov. Int J Syst Bacteriol 1989; 39:68–71 [View Article]
    [Google Scholar]
  70. Murray WD, Khan AW, van den Berg L et al. Clostridium saccharolyticum sp. nov., a saccharolytic species from sewage sludge. Int J Syst Bacteriol 1982; 32:132–135 [View Article]
    [Google Scholar]
  71. Gogotova GI, Vainshtein MB. Spore-forming sulfate reducing bacterium Desulfotomaculum guttoideum sp. nov. Mikrobiologiya 1983; 52:789–793
    [Google Scholar]
  72. Stackebrandt E, Sproer C, Rainey FA, Burghardt J, Päuker O et al. Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. Int J Syst Bacteriol 1997; 47:1134–1139 [View Article][PubMed]
    [Google Scholar]
  73. Nei M, Kumar S. Molecular Evolution and Phylogenetics Oxford, New York: Oxford University Press; 2000
    [Google Scholar]
  74. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  75. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  76. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2004; 101:11030–11035 [View Article][PubMed]
    [Google Scholar]
  77. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  78. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article]
    [Google Scholar]
  79. Ogah K, Sethi K, Karthik V. Clostridium clostridioforme liver abscess complicated by portal vein thrombosis in childhood. J Med Microbiol 2012; 61:297–299 [View Article][PubMed]
    [Google Scholar]
  80. Williams OM, Brazier J, Peraino V, Goldstein EJ. A review of three cases of Clostridium aldenense bacteremia. Anaerobe 2010; 16:475–477 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003698
Loading
/content/journal/ijsem/10.1099/ijsem.0.003698
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error