1887

Abstract

A Gram-stain-negative, rod-shaped, red-coloured and aerobic bacterium, designated 2b14, was isolated from rhizosphere soil of sampled at the Chinese Arctic Yellow River Station in Norway. Optimal growth occurred at 28 °C (range, 4–37 °C) and pH 7.0–7.5 (pH 6.5–8.5). The strain could tolerate up to 2.5 % (w/v) NaCl concentration. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 2b14had the highest similarity value of 96.0 % to CCTCC AB 2013049. The major fatty acids were summed feature 4 (anteiso-C B and/or iso-C I), iso-C and iso-C 3-OH. The major polar lipid was found to be phosphatidylethanolamine. The genomic DNA G+C content of strain 2b14 was 45.5 mol%. The sole respiratory quinone was MK-7. The combined results of physiological, genotypic, phylogenetic and chemotaxonomic analyses showed that strain 2b14 represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is 2b14 (=KCTC 62596=MCCC 1H00304).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003668
2019-08-22
2019-10-14
Loading full text...

Full text loading...

References

  1. Nedashkovskaya OI, Kim SB, Suzuki M, Shevchenko LS, Lee MS et al. Pontibacter actiniarum gen. nov., sp. nov., a novel member of the phylum 'Bacteroidetes', and proposal of Reichenbachiella gen. nov. as a replacement for the illegitimate prokaryotic generic name Reichenbachia Nedashkovskaya et al. 2003. Int J Syst Evol Microbiol 2005;55:2583–2588 [CrossRef][PubMed]
    [Google Scholar]
  2. Wang Y, Zhang K, Cai F, Zhang L, Tang Y et al. Pontibacter xinjiangensis sp. nov., in the phylum 'Bacteroidetes', and reclassification of [Effluviibacter] roseus as Pontibacter roseus comb. nov. Int J Syst Evol Microbiol 2010;60:99–103 [CrossRef][PubMed]
    [Google Scholar]
  3. Osman G, Wang Z, Wang N, Shayimu G, Hou M et al. Pontibacter silvestris sp. nov., isolated from the soil of a Populus euphratica forest and emended description of the genus Pontibacter. Int J Syst Evol Microbiol 2018;68:3243–3247 [CrossRef][PubMed]
    [Google Scholar]
  4. Munoz R, Rosselló-Móra R, Amann R. Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov. Syst Appl Microbiol 2016;39:281–296 [CrossRef][PubMed]
    [Google Scholar]
  5. Zhou Y, Wang X, Liu H, Zhang KY, Zhang YQ et al. Pontibacter akesuensis sp. nov., isolated from a desert soil in China. Int J Syst Evol Microbiol 2007;57:321–325 [CrossRef][PubMed]
    [Google Scholar]
  6. Xu L, Zeng XC, Nie Y, Luo X, Zhou E et al. Pontibacter diazotrophicus sp. nov., a novel nitrogen-fixing bacterium of the family Cytophagaceae. PLoS One 2014;9:e9229492297 [CrossRef][PubMed]
    [Google Scholar]
  7. Dastager SG, Raziuddin QS, Deepa CK, Li WJ, Pandey A. Pontibacter niistensis sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2010;60:2867–2870 [CrossRef][PubMed]
    [Google Scholar]
  8. Singh AK, Garg N, Lal R. Pontibacter chinhatensis sp. nov., isolated from pond sediment containing discarded hexachlorocyclohexane isomer waste. Int J Syst Evol Microbiol 2015;65:2248–2254 [CrossRef][PubMed]
    [Google Scholar]
  9. Wu YH, Zhou P, Jian SL, Liu ZS, Wang CS et al. Pontibacter amylolyticus sp. nov., isolated from a deep-sea sediment hydrothermal vent field. Int J Syst Evol Microbiol 2016;66:1760–1767 [CrossRef][PubMed]
    [Google Scholar]
  10. Mahato NK, Tripathi C, Nayyar N, Singh AK, Lal R. Pontibacter ummariensis sp. nov., isolated from a hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 2016;66:1080–1087 [CrossRef][PubMed]
    [Google Scholar]
  11. Mu DS, Liang QY, Wang XM, Lu DC, Shi MJ et al. Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing. Microbiome 2018;6:230 [CrossRef][PubMed]
    [Google Scholar]
  12. Liu QQ, Li XL, Rooney AP, Du ZJ, Chen GJ et al. Tangfeifania diversioriginum gen. nov., sp. nov., a representative of the family Draconibacteriaceae. Int J Syst Evol Microbiol 2014;64:3473–3477 [CrossRef][PubMed]
    [Google Scholar]
  13. Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S et al. ABySS 2.0: resource-efficient assembly of large genomes using a bloom filter. Genome Res 2017;27:768–777 [CrossRef][PubMed]
    [Google Scholar]
  14. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  15. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  18. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  19. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  20. Yoon SH, Ha S min, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:; 1281-1286 [CrossRef][PubMed]
    [Google Scholar]
  21. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  22. Weber T, Blin K, Duddela S, Krug D, Kim HU et al. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 2015;43:W237–W243 [CrossRef][PubMed]
    [Google Scholar]
  23. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the bacteria and archaea. Int J Syst Evol Microbiol 2014;64:316–324 [CrossRef][PubMed]
    [Google Scholar]
  24. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010;2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  25. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society For Microbiology; 1994; pp.611–651
    [Google Scholar]
  26. Bowman JP, Nichols CM, Gibson JA. Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. Int J Syst Evol Microbiol 2003;53:1343–1355 [CrossRef][PubMed]
    [Google Scholar]
  27. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  28. Dong XZ, Cai MY. Determination of biochemical characteristics. In Dong XZ, Cai MY. (editors) Manual for the Systematic Identification of General Bacteria Beijing: Science Press; 2001; pp.370–398
    [Google Scholar]
  29. Zhang Y, Tang K, Shi X, Zhang XH. Flaviramulus ichthyoenteri sp. nov., an N-acylhomoserine lactone-degrading bacterium isolated from the intestine of a flounder (Paralichthys olivaceus), and emended descriptions of the genus Flaviramulus and Flaviramulus basaltis. Int J Syst Evol Microbiol 2013;63:4477–4483 [CrossRef][PubMed]
    [Google Scholar]
  30. CLSI Performance Standards for Antimicrobial Susceptibility Testing, Twenty-fifith Informational Supplement CLSI document M100-S25 Wayne, PA: Clinical and Laboratory Standards. Institute; 2015
    [Google Scholar]
  31. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  32. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  33. Cao H, Nie Y, Zeng XC, Xu L, He Z et al. Pontibacter yuliensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014;64:968–972 [CrossRef][PubMed]
    [Google Scholar]
  34. Kim DU, Kim JY, Jang JH, Kim MK. Pontibacter terrae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2018;68:3184–3189 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003668
Loading
/content/journal/ijsem/10.1099/ijsem.0.003668
Loading

Data & Media loading...

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error