1887

Abstract

A Gram-stain-negative, strictly aerobic and moderately halophilic bacterium, designated strain Gri0909, was isolated from a red marine alga, species, in the Yellow Sea of the Republic of Korea. Cells were motile by a single polar flagellum and short-rods showing oxidase and catalase activities. Growth was observed at 10–37 °C (optimum, 30 °C) and pH 6.0–9.0 (optimum, pH 8.0) and in the presence of 0–12.0 % (w/v) NaCl (optimum, 2.0–3.0 %). Strain Gri0909 contained C, C 2-OH, anteiso-C and summed feature 8 (comprising C 7 and/or C 6) as major fatty acids. Ubiquinone-10 was identified as the sole isoprenoid quinone. Major polar lipids consisted of phosphatidylethanolamine, an identified phospholipid, four unidentified aminolipids and five unidentified lipids. The G+C content of the genomic DNA calculated from the whole-genome sequence was 59.1 mol%. Strain Gri0909 was most closely related to ZC80 with 91.4 % 16S rRNA gene sequence similarity. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain Gri0909 formed a phyletic lineage within the family . The very low 16S rRNA gene sequence similarities, together with distinct phenotypic and chemotaxonomic properties, served to differentiate strain Gri0909 from phylogenetically closely related genera. Here it is proposed that strain Gri0909 represents a new species of a novel genus of the family , for which the name gen. nov., sp. nov. is proposed. The type strain is Gri0909 (=KACC 19793=JCM 32943).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003656
2019-11-01
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/11/3544.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003656&mimeType=html&fmt=ahah

References

  1. Pfennig N, Truper HG. Higher taxa of the phototrophic bacteria. Int J Syst Bacteriol 1971; 21:17–18 [View Article]
    [Google Scholar]
  2. Chen MH, Zhou XY, Fh O, Xia F, Yy L et al. Aliidongia dinghuensis gen. nov., sp. nov., a poly-β-hydroxybutyrate-producing bacterium isolated from Pinus massoniana forest soil. Int J Stst Evol Microbiol 2017; 67:21–217
    [Google Scholar]
  3. Humrighouse BW, Emery BD, Kelly AJ, Metcalfe MG, Mbizo J et al. Haematospirillum jordaniae gen. nov., sp. nov., isolated from human blood samples. Antonie Van Leeuwenhoek 2016; 109:493–500 [View Article]
    [Google Scholar]
  4. Sheu S-Y, Chen Y-L, Young C-C, Chen W-M. Lacibacterium aquatile gen. nov., sp. nov., a new member of the family Rhodospirillaceae isolated from a freshwater lake. Int J Syst Evol Microbiol 2013; 63:4797–4804 [View Article]
    [Google Scholar]
  5. Choi DH, Hwang CY, Cho BC. Pelagibius litoralis gen. nov., sp. nov., a marine bacterium in the family Rhodospirillaceae isolated from coastal seawater. Int J Syst Evol Microbiol 2009; 59:818–823 [View Article]
    [Google Scholar]
  6. Weon H-Y, Kim B-Y, Hong S-B, Joa J-H, Nam S-S et al. Skermanella aerolata sp. nov., isolated from air, and emended description of the genus Skermanella . Int J Syst Evol Microbiol 2007; 57:1539–1542 [View Article]
    [Google Scholar]
  7. Williams TJ, Lefevre CT, Zhao W, Beveridge TJ, Bazylinski DA. Magnetospira thiophila gen. nov., sp. nov., a marine magnetotactic bacterium that represents a novel lineage within the Rhodospirillaceae (Alphaproteobacteria). Int J Syst Evol Microbiol 2012; 62:2443–2450 [View Article]
    [Google Scholar]
  8. Garrity GM, Bell JA, Lilburn T. Family I. Rhodobacteraceae fam. nov. In Garrity GM. (editor) Bergey’s Manual of Systematic Bacteriology USA: Springer; 2005 pp. 161–228
    [Google Scholar]
  9. Yamada K, Fukuda W, Kondo Y, Miyoshi Y, Atomi H et al. Constrictibacter antarcticus gen. nov., sp. nov., a cryptoendolithic micro-organism from Antarctic white rock. Int J Syst Evol Microbiol 2011; 61:1973–1980 [View Article]
    [Google Scholar]
  10. Zhang D, Yang H, Zhang W, Huang Z, Liu SJ. Rhodocista pekingensis sp. nov., a cyst-forming phototrophic bacterium from a municipal wastewater treatment plant. Int J Syst Evol Microbiol 2003; 53:1111–1114 [View Article]
    [Google Scholar]
  11. Raj PS, Chakravarthy SK, Ramaprasad EV, Sasikala C, Ramana C. Phaeospirillum tilakii sp. nov., a phototrophic alphaproteobacterium isolated from aquatic sediments. Int J Syst Evol Microbiol 2012; 62:1069–1074 [View Article][PubMed]
    [Google Scholar]
  12. Li Z. Advances in marine microbial symbionts in the china sea and related pharmaceutical metabolites. Mar Drugs 2009; 7:113–129 [View Article]
    [Google Scholar]
  13. Jeong SE, Kim KH, Lhee D, Yoon HS, Quan Z-X et al. Oceaniradius stylonematis gen. nov., sp. nov., isolated from a red alga, Stylonema cornu-cervi . Int J Syst Evol Microbiol 2019; 69:1967–1973 [View Article]
    [Google Scholar]
  14. Jung HS, Jeong SE, Chun BH, Quan Z-X, Jeon CO. Rhodophyticola porphyridii gen. nov., sp. nov., isolated from a red alga, Porphyridium marinum . Int J Syst Evol Microbiol 2019; 69:1656–1661 [View Article]
    [Google Scholar]
  15. Feng T, Kim KH, Jeong SE, Kim W, Jeon CO. Aquicoccus porphyridii gen. nov., sp. nov., isolated from a small marine red alga, Porphyridium marinum . Int J Syst Evol Microbiol 2018; 68:283–288 [View Article]
    [Google Scholar]
  16. Murphy CD, Moore RM, White RL. Peroxidases from marine microalgae. J Appl Phycol 2000; 12:507–513 [View Article]
    [Google Scholar]
  17. Kawasaki K, Kamagata Y. Phosphate-catalyzed hydrogen peroxide formation from agar, gellan, and κ-carrageenan and recovery of microbial cultivability via catalase and pyruvate. Appl Environ Microbiol 2017; 83:e0136617 [View Article]
    [Google Scholar]
  18. Lane DJ. 16S/23S rRNA Sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley & Sons,; 1991 pp. 115–147
    [Google Scholar]
  19. Lee Y, Jeon CO. Solitalea longa sp. nov., isolated from freshwater and emended description of the genus Solitalea . Int J Syst Evol Microbiol 2018; 68:2826–2831 [View Article][PubMed]
    [Google Scholar]
  20. Yoon SH, Sm H, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617
    [Google Scholar]
  21. Ludwig W et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article]
    [Google Scholar]
  22. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive bayesian classifier for rapid assignment of rrna sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007; 73:5261–5267 [View Article]
    [Google Scholar]
  23. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  24. Si N, Kim YO, Yoon SH, Sm H, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285
    [Google Scholar]
  25. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  26. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  27. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article]
    [Google Scholar]
  28. Gomori G. Preparation of buffers for use in enzyme studies. Methods Enzymol 1955; 1:138–146
    [Google Scholar]
  29. Lányi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19:1–67
    [Google Scholar]
  30. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P. (editor) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  31. Chen S, Xu Y, Zheng C, Ke L-X, Lx K. Marivibrio halodurans gen. nov., sp. nov., a marine bacterium in the family Rhodospirillaceae isolated from underground rock salt. Int J Syst Evol Microbiol 2017; 67:4266–4271 [View Article]
    [Google Scholar]
  32. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  33. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  34. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
  35. Park S, Park J-M, Kang C-H, Yoon J-H. Aestuariispira insulae gen. nov., sp. nov., a lipolytic bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2014; 64:1841–1846 [View Article]
    [Google Scholar]
  36. López-López A, Pujalte MJ, Benlloch S, Mata-Roig M, Rosselló-Mora R et al. Thalassospira lucentensis gen. nov., sp. nov., a new marine member of the α-Proteobacteria . Int J Syst Evol Microbiol 2002; 52:1277–1283
    [Google Scholar]
  37. Wiese J, Thiel V, Gartner A, Schmaljohann R, Imhoff JF. Kiloniella laminariae gen. nov., sp. nov., an alphaproteobacterium from the marine macroalga Laminaria saccharina . Int J Syst Evol Microbiol 2009; 59:350–356 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003656
Loading
/content/journal/ijsem/10.1099/ijsem.0.003656
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error