1887

Abstract

, and are phenotypically and genotypically closely related, and together comprise the group. In this study, the taxonomic relationships among , and were re-evaluated by using polyphasic approaches. The similarity values of the concatenated housekeeping gene (, and ) sequences shared by the type strains of , and ranged from 98.3 to 99.4 %. The average nucleotide identity, average amino acid identity and digital DNA‒DNA hybridization values among these three taxa were greater (97.1‒98.1 %, 96.8‒98.1 % and 75.0‒83.5 %, respectively) than the thresholds for bacterial species delineation, indicating that they belong to the same species, whereas those for were clearly lower than the thresholds. In addition, phenotypic and chemotaxonomic characterization results also support the synonymy of these three taxa. Therefore, we propose that and should be reclassified as later heterotypic synonyms of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003654
2019-11-01
2020-01-20
Loading full text...

Full text loading...

References

  1. Cohn F. Untersuchungen über Bakterien. Beitr Biol Pflanz 1872;1:127–244
    [Google Scholar]
  2. Stackebrandt E, Koch C, Gvozdiak O, Schumann P. Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 1995;45:682–692 [CrossRef][PubMed]
    [Google Scholar]
  3. Wieser M, Denner EB, Kämpfer P, Schumann P, Tindall B et al. Emended descriptions of the genus Micrococcus, Micrococcus luteus (Cohn 1872) and Micrococcus lylae (Kloos et al. 1974). Int J Syst Evol Microbiol 2002;52:629–637 [CrossRef][PubMed]
    [Google Scholar]
  4. Chen HH, Zhao GZ, Park DJ, Zhang YQ, Xu LH et al. Micrococcus endophyticus sp. nov., isolated from surface-sterilized Aquilaria sinensis roots. Int J Syst Evol Microbiol 2009;59:1070–1075 [CrossRef][PubMed]
    [Google Scholar]
  5. Prakash O, Nimonkar Y, Munot H, Sharma A, Vemuluri VR et al. Description of Micrococcus aloeverae sp. nov., an endophytic actinobacterium isolated from Aloe vera. Int J Syst Evol Microbiol 2014;64:3427–3433 [CrossRef][PubMed]
    [Google Scholar]
  6. Zhao GZ, Li J, Qin S, Zhang YQ, Zhu WY et al. Micrococcus yunnanensis sp. nov., a novel actinobacterium isolated from surface-sterilized Polyspora axillaris roots. Int J Syst Evol Microbiol 2009;59:2383–2387 [CrossRef][PubMed]
    [Google Scholar]
  7. Liu H, Xu Y, Ma Y, Zhou P. Characterization of Micrococcus antarcticus sp. nov., a psychrophilic bacterium from Antarctica. Int J Syst Evol Microbiol 2000;50:715–719 [CrossRef][PubMed]
    [Google Scholar]
  8. Kooken JM, Fox KF, Fox A. Characterization of Micrococcus strains isolated from indoor air. Mol Cell Probes 2012;26:1–5 [CrossRef][PubMed]
    [Google Scholar]
  9. Rieser G, Scherer S, Wenning M. Micrococcus cohnii sp. nov., isolated from the air in a medical practice. Int J Syst Evol Microbiol 2013;63:80–85 [CrossRef][PubMed]
    [Google Scholar]
  10. Liu XY, Wang BJ, Jiang CY, Liu SJ. Micrococcus flavus sp. nov., isolated from activated sludge in a bioreactor. Int J Syst Evol Microbiol 2007;57:66–69 [CrossRef][PubMed]
    [Google Scholar]
  11. Kloos WE, Tornabene TG, Schleifer KH. Isolation and characterization of micrococci from human skin, including two new species: Micrococcus lylae and Micrococcus kristinae. Int J Syst Bacteriol 1974;24:79–101 [CrossRef]
    [Google Scholar]
  12. Zhang JY, Liu XY, Liu SJ. Agrococcus terreus sp. nov. and Micrococcus terreus sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2010;60:1897–1903 [CrossRef][PubMed]
    [Google Scholar]
  13. Whitman WB. Modest proposals to expand the type material for naming of prokaryotes. Int J Syst Evol Microbiol 2016;66:2108–2112 [CrossRef][PubMed]
    [Google Scholar]
  14. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  15. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  17. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992;9:945–967
    [Google Scholar]
  18. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  19. Chor B, Hendy MD, Snir S. Maximum likelihood Jukes-Cantor triplets: analytic solutions. Mol Biol Evol 2006;23:626–632 [CrossRef][PubMed]
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  21. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008;24:713–714 [CrossRef][PubMed]
    [Google Scholar]
  22. Klimke W, Agarwala R, Badretdin A, Chetvernin S, Ciufo S et al. The national center for biotechnology information's protein clusters database. Nucleic Acids Res 2009;37:D216–D223 [CrossRef][PubMed]
    [Google Scholar]
  23. Blom J, Albaum SP, Doppmeier D, Pühler A, Vorhölter FJ et al. EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinformatics 2009;10:154 [CrossRef][PubMed]
    [Google Scholar]
  24. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  25. Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 2010;5:e9490 [CrossRef][PubMed]
    [Google Scholar]
  26. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  28. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005;102:2567–2572 [CrossRef][PubMed]
    [Google Scholar]
  29. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005;187:6258–6264 [CrossRef][PubMed]
    [Google Scholar]
  30. Chittpurna S, Singh PK, Verma D, Pinnaka AK, Mayilraj S et al. Micrococcus lactis sp. nov., isolated from dairy industry waste. Int J Syst Evol Microbiol 2011;61:2832–2836 [CrossRef][PubMed]
    [Google Scholar]
  31. Chern LL, Stackebrandt E, Lee SF, Lee FL, Chen JK et al. Chitinibacter tainanensis gen. nov., sp. nov., a chitin-degrading aerobe from soil in Taiwan. Int J Syst Evol Microbiol 2004;54:1387–1391 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003654
Loading
/content/journal/ijsem/10.1099/ijsem.0.003654
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error