1887

Abstract

Strain CECT 7735, a marine Gram-reaction negative, aerobic, non-motile bacterium, was isolated from coastal seawater in Valencia, Spain. Strain CECT 7735 is chemoorganotrophic, mesophilic, slightly halophilic, grows at 15–28 °C but not at 4 or 37 °C, requires seawater for growth and grows up to 6 % salinity. The major cellular fatty acid is summed feature 8 (Cω7 and/or Cω6). The G+C content of the genome is 55.7 mol%. Comparative analysis of the 16S rRNA gene sequence shows the strain is affiliated to the family , in the class , with highest similarities to species (97.0–97.5 %), species (96.5–97.3 %) and (96.5 %). Further phylogenomic analysis through the up-to-date-bacterial core gene (UBCG) set showed to be its closest relative. Average nucleotide identity and DNA–DNA hybridization values are lower than 85 and 21 %, respectively, with its phylogenetic relatives, suggesting that strain CECT 7735 represents a new species. The average amino acid identity value was over 70 % with the genome of the type strain of and with all those of species. These values, together with UBCG set trees, suggest that the new species and belong to the same genus and that should be reclassified as a species. We conclude that strain CECT 7735 represents a new species in the genus , for which we propose the name sp. nov. In addition, is reclassified as comb. nov. From the same phylogenomic study, it can be concluded that should be reclassified in the genus as comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003629
2019-11-01
2019-12-08
Loading full text...

Full text loading...

References

  1. Kim YO, Park S, Nam BH, Kim DG, Yoon JH. Pseudopelagicola gijangensis gen. nov., sp. nov., isolated from the sea squirt Halocynthia roretzi. Int J Syst Evol Microbiol 2014;64:3447–3452 [CrossRef][PubMed]
    [Google Scholar]
  2. Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC et al. The family Rhodobacteraceae. In Rosenberg E, DeLong EF, Stackebrandt E, Lory S, Thompson F et al. (editors) The Prokaryotes—Alphaproteobacteria and Betaproteobacteria, 4th ed. Berlin, Germany: Springer Verlag; 2014; pp.439–512
    [Google Scholar]
  3. Wirth JS, Whitman WB. Phylogenomic analyses of a clade within the roseobacter group suggest taxonomic reassignments of species of the genera Aestuariivita, Citreicella, Loktanella, Nautella, Pelagibaca, Ruegeria, Thalassobius, Thiobacimonas and Tropicibacter, and the proposal of six novel genera. Int J Syst Evol Microbiol 2018;68:2393–2411 [CrossRef][PubMed]
    [Google Scholar]
  4. Choi DH, Cho BC. Shimia marina gen. nov., sp. nov., a novel bacterium of the Roseobacter clade isolated from biofilm in a coastal fish farm. Int J Syst Evol Microbiol 2006;56:1869–1873 [CrossRef][PubMed]
    [Google Scholar]
  5. Chen MH, Sheu SY, Chen CA, Wang JT, Chen WM. Shimia isoporae sp. nov., isolated from the reef-building coral Isopora palifera. Int J Syst Evol Microbiol 2011;61:823–827 [CrossRef][PubMed]
    [Google Scholar]
  6. Hyun DW, Kim MS, Shin NR, Kim JY, Kim PS et al. Shimia haliotis sp. nov., a bacterium isolated from the gut of an abalone, Haliotis discus hannai. Int J Syst Evol Microbiol 2013;63:4248–4253 [CrossRef][PubMed]
    [Google Scholar]
  7. Hameed A, Shahina M, Lin SY, Lai WA, Hsu YH et al. Shimia biformata sp. nov., isolated from surface seawater, and emended description of the genus Shimia Choi and Cho 2006. Int J Syst Evol Microbiol 2013;63:4533–4539 [CrossRef][PubMed]
    [Google Scholar]
  8. Nogi Y, Mori K, Uchida H, Hatada Y. Shimia sagamensis sp. nov., a marine bacterium isolated from cold-seep sediment. Int J Syst Evol Microbiol 2015;65:2786–2790 [CrossRef][PubMed]
    [Google Scholar]
  9. Breider S, Scheuner C, Schumann P, Fiebig A, Petersen J et al. Genome-scale data suggest reclassifications in the Leisingera-Phaeobacter cluster including proposals for Sedimentitalea gen. nov. and Pseudophaeobacter gen. nov. Front Microbiol 2014;5:416 [CrossRef][PubMed]
    [Google Scholar]
  10. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  11. Pujalte MJ, Lucena T, Rodrigo-Torres L, Arahal DR. Comparative Genomics of Thalassobius Including the Description of Thalassobius activus sp. nov., and Thalassobius autumnalis sp. nov. Front Microbiol 2017;8:2645 [CrossRef][PubMed]
    [Google Scholar]
  12. Farmer III JJ, Hickman-Brenner FW. The genera Vibrio and Photobacterium. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E et al. (editors) The Prokaryotes, 3rd ed.. New York: Springer; 2006; pp.508–563
    [Google Scholar]
  13. Baumann P, Baumann L. The marine gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas and Alcaligenes. In Starr MP, Stolp H, Trueper HG, Balows A. (editors) The Prokaryotesvol. 2 Springer; 1981; pp.1302–1331
    [Google Scholar]
  14. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark: DE: MIDI Technical Note 101, MIDI Inc; 1990
    [Google Scholar]
  15. MIDI Sherlock Microbial Identification System Operating Manual, version 6.1 Newark, DE: MIDI Inc; 2008
    [Google Scholar]
  16. Arahal DR, Sánchez E, Macián MC, Garay E. Value of recN sequences for species identification and as a phylogenetic marker within the family "Leuconostocaceae". Int Microbiol 2008;11:33–39[PubMed]
    [Google Scholar]
  17. Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer KH et al. Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 2010;33:291–299 [CrossRef][PubMed]
    [Google Scholar]
  18. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004;32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  19. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  20. Cuccuru G, Orsini M, Pinna A, Sbardellati A, Soranzo N et al. Orione, a web-based framework for NGS analysis in microbiology. Bioinformatics 2014;30:1928–1929 [CrossRef][PubMed]
    [Google Scholar]
  21. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  22. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25:1043–1055 [CrossRef][PubMed]
    [Google Scholar]
  23. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  24. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75 [CrossRef][PubMed]
    [Google Scholar]
  25. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014;42:D206–D214 [CrossRef][PubMed]
    [Google Scholar]
  26. Weber T, Blin K, Duddela S, Krug D, Kim HU et al. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 2015;43:W237–W243 [CrossRef][PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  28. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016;32:929–931 [CrossRef][PubMed]
    [Google Scholar]
  29. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  30. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018;56:281–285 [CrossRef][PubMed]
    [Google Scholar]
  31. Konstantinidis KT, Rodriguez-R LM. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Prepints 1900;2016:
    [Google Scholar]
  32. Nogi Y, Mori K, Makita H, Hatada Y. Thalassobius abyssi sp. nov., a marine bacterium isolated from cold-seep sediment. Int J Syst Evol Microbiol 2016;66:574–579 [CrossRef][PubMed]
    [Google Scholar]
  33. Yi H, Chun J. Thalassobius aestuarii sp. nov., isolated from tidal flat sediment. J Microbiol 2006;44:171–176[PubMed]
    [Google Scholar]
  34. Park S, Jung YT, Won SM, Park JM, Yoon JH. Thalassobius aquaeponti sp. nov., an alphaproteobacterium isolated from seawater. Antonie van Leeuwenhoek 2014;106:535–542 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003629
Loading
/content/journal/ijsem/10.1099/ijsem.0.003629
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error