1887

Abstract

Twenty-two cream-coloured bacterial strains were isolated from oak trees affected by acute oak decline (AOD) in Southern England. Isolates were Gram-negative, motile, slightly curved rods, aerobic, non-spore-forming, catalase positive and oxidase positive. 16S rRNA gene sequence analysis placed the strains in two separate phylogenetic clusters in the group, with as the closest phylogenetic relative. Multilocus sequence analyses of the , and genes supported the delineation of the strains into two separate taxa, which could be differentiated phenotypically and chemotaxonomically from each other, and their closest relatives. Average nucleotide identity and DNA–DNA hybridization values revealed percentages of genome similarity below the species threshold (95 and 70 %, respectively) between the two taxa and the closest relatives, confirming their novel species status. Therefore, on the basis of this polyphasic approach we propose two novel species, sp. nov. (type strain FRB 228=LMG 31087=NCPPB 4672) and sp. nov. (type strain FRB 230=LMG 31087=NCPPB 4673).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003615
2019-11-01
2020-09-18
Loading full text...

Full text loading...

References

  1. Denman S, Brown N, Kirk S, Jeger M, Webber J. A description of the symptoms of Acute Oak Decline in Britain and a comparative review on causes of similar disorders on oak in Europe. Forestry 2014;87:535–551 [CrossRef]
    [Google Scholar]
  2. Brown N, Inward DJG, Jeger M, Denman S. A review of Agrilus biguttatus in UK forests and its relationship with acute oak decline. Forestry 2015;88:53–63 [CrossRef]
    [Google Scholar]
  3. Migula W. Über ein neues System der Bakterien. Arb aus dem Bakteriol Inst der Tech Hochschule zu Karlsruhe 1894;235–238
    [Google Scholar]
  4. Peix A, Ramírez-Bahena MH, Velázquez E. The current status on the taxonomy of Pseudomonas revisited: An update. Infect Genet Evol 2018;57:106–116 [CrossRef][PubMed]
    [Google Scholar]
  5. Niemann S, Pühler A, Tichy HV, Simon R, Selbitschka W. Evaluation of the resolving power of three different DNA fingerprinting methods to discriminate among isolates of a natural Rhizobium meliloti population. J Appl Microbiol 1997;82:477–484 [CrossRef][PubMed]
    [Google Scholar]
  6. Beiki F, Busquets A, Gomila M, Rahimian H, Lalucat J et al. New Pseudomonas spp. Are pathogenic to citrus. PLoS One 2016;11:e014879616 [CrossRef][PubMed]
    [Google Scholar]
  7. Mulet M, Bennasar A, Lalucat J, García-Valdés E. An rpoD-based PCR procedure for the identification of Pseudomonas species and for their detection in environmental samples. Mol Cell Probes 2009;23:140–147 [CrossRef][PubMed]
    [Google Scholar]
  8. Ait Tayeb L, Ageron E, Grimont F, Grimont PA. Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res Microbiol 2005;156:763–773 [CrossRef][PubMed]
    [Google Scholar]
  9. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  10. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  11. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 1999; pp.95–98
    [Google Scholar]
  12. Vaidya G, Lohman DJ, Meier R. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 2011;27:171–180 [CrossRef]
    [Google Scholar]
  13. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010;59:307–321 [CrossRef][PubMed]
    [Google Scholar]
  14. Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001;17:754–755 [CrossRef][PubMed]
    [Google Scholar]
  15. Lefort V, Longueville JE, Gascuel O. SMS: smart model selection in PhyML. Mol Biol Evol 2017;34:2422–2424 [CrossRef][PubMed]
    [Google Scholar]
  16. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 2012;9:772 [CrossRef][PubMed]
    [Google Scholar]
  17. Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol 2008;25:1307–1320 [CrossRef][PubMed]
    [Google Scholar]
  18. Rannala B, Yang Z. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 1996;43:304–311 [CrossRef][PubMed]
    [Google Scholar]
  19. Zhaxybayeva O, Gogarten JP. Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. BMC Genomics 2002;3:4 [CrossRef][PubMed]
    [Google Scholar]
  20. Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E. Phylogenomics and systematics in Pseudomonas. Front Microbiol 2015;6:214 [CrossRef][PubMed]
    [Google Scholar]
  21. Mulet M, Lalucat J, García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 2010;12:1513–1530 [CrossRef][PubMed]
    [Google Scholar]
  22. Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A et al. Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 2000;146:2385–2394 [CrossRef][PubMed]
    [Google Scholar]
  23. Versalovic J, Schneider M, de Bruijn F, Lupski JR. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 1994;5:25–40
    [Google Scholar]
  24. Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 1991;19:6823–6831 [CrossRef][PubMed]
    [Google Scholar]
  25. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 1990;18:6531–6535 [CrossRef][PubMed]
    [Google Scholar]
  26. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–2120 [CrossRef][PubMed]
    [Google Scholar]
  27. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009;25:2078–2079 [CrossRef][PubMed]
    [Google Scholar]
  28. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010;26:841–842 [CrossRef][PubMed]
    [Google Scholar]
  29. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010;26:589–595 [CrossRef][PubMed]
    [Google Scholar]
  30. Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A et al. Assembling genomes and mini-metagenomes from highly chimeric reads. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2013; pp.158–170
    [Google Scholar]
  31. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  32. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016;32:929–931 [CrossRef][PubMed]
    [Google Scholar]
  33. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  35. King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 1954;44:301–307[PubMed]
    [Google Scholar]
  36. Doetsch RN. Determinative methods of light microscopy. Man Methods Gen Bacteriol 1981;21–33
    [Google Scholar]
  37. Khoo KH, Suzuki R, dell A, Morris HR, Mcneil MR et al. Chemistry of the lyxose-containing mycobacteriophage receptors of Mycobacterium phlei/Mycobacterium smegmatis. Biochemistry 1996;35:11812–11819 [CrossRef][PubMed]
    [Google Scholar]
  38. Palleroni NJ. Pseudomonas. In Bergey’s Manual of Systematics of Archaea and Bacteria Chichester, UK: John Wiley & Sons, Ltd.; pp.1
    [Google Scholar]
  39. Uchino M, Kosako Y, Uchimura T, Komagata K. Emendation of Pseudomonas straminea Iizuka and Komagata 1963. Int J Syst Evol Microbiol 2000;50:1513–1519 [CrossRef][PubMed]
    [Google Scholar]
  40. Hunter WJ, Manter DK. Pseudomonas seleniipraecipitatus sp. nov.: a selenite reducing γ-proteobacteria isolated from soil. Curr Microbiol 2011;62:565–569 [CrossRef][PubMed]
    [Google Scholar]
  41. Hildebrand DC, Palleroni NJ, Hendson M, Toth J, Johnson JL. Pseudomonas flavescens sp. nov., isolated from walnut blight cankers. Int J Syst Bacteriol 1994;44:410–415 [CrossRef][PubMed]
    [Google Scholar]
  42. Peix A, Berge O, Rivas R, Abril A, Velázquez E. Pseudomonas argentinensis sp. nov., a novel yellow pigment-producing bacterial species, isolated from rhizospheric soil in Cordoba, Argentina. Int J Syst Evol Microbiol 2005;55:1107–1112 [CrossRef][PubMed]
    [Google Scholar]
  43. Ramos E, Ramírez-Bahena MH, Valverde A, Velázquez E, Zúñiga D et al. Pseudomonas punonensis sp. nov., isolated from straw. Int J Syst Evol Microbiol 2013;63:1834–1839 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003615
Loading
/content/journal/ijsem/10.1099/ijsem.0.003615
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error