1887

Abstract

A Gram-stain-negative strain, designated FM6, was isolated from surface seawater sampled at the port in Xiamen, PR China. Strain FM6 showed less than 96.3 % 16S rRNA gene sequence similarity to the type strains of species with validly published names. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain FM6 belonged to the family and was closely related to species of the genera (96.3 %) and (96.0 %). Ubiquinone-10 was the predominant respiratory quinone. Cells were motile with a single polar flagellum. Growth occurred at temperatures from 20 to 45 °C (optimum, 30 °C), at pH values between pH 6.0 and 8.0 (optimum, pH 7.0) and in 0–4.0 % (w/v) NaCl (optimum, 1.0–1.5 %). Predominant polar lipids were sphingoglycolipid, phosphatidylcholine, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, five unidentified glycolipids and five unidentified polar lipids. The major fatty acids were summed feature 8 (containing Cω7 and/or Cω6). The DNA G+C content of the type strain was 63.8 mol%. On the basis of the results of phylogenetic analysis, combined with phenotypic and chemotaxonomic data, strain FM6 is considered to represent a novel species in a new genus in the family for which the name gen. nov., sp. nov. is proposed. The type strain of gen. nov., sp. nov. is FM6 (=MCCC 1K03501=JCM 32714).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003566
2019-09-01
2019-10-21
Loading full text...

Full text loading...

References

  1. Kosako Y, Yabuuchi E, Naka T, Fujiwara N, Kobayashi K. Proposal of Sphingomonadaceae fam. nov., consisting of Sphingomonas Yabuuchi et al. 1990, Erythrobacter Shiba and Shimidu 1982, Erythromicrobium Yurkov et al. 1994, Porphyrobacter Fuerst et al. 1993, Zymomonas Kluyver and van Niel 1936, and Sandaracinobacter Yurkov et al. 1997, with the type genus Sphingomonas Yabuuchi et al. 1990. Microbiol Immunol 2000;44:563–575 [CrossRef][PubMed]
    [Google Scholar]
  2. Lee KB, Liu CT, Anzai Y, Kim H, Aono T et al. The hierarchical system of the 'Alphaproteobacteria': description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 2005;55:1907–1919 [CrossRef][PubMed]
    [Google Scholar]
  3. Kim M, Kang O, Zhang Y, Ren L, Chang X et al. Sphingoaurantiacus polygranulatus gen. nov., sp. nov., isolated from high-Arctic tundra soil, and emended descriptions of the genera Sandarakinorhabdus, Polymorphobacter and Rhizorhabdus and the species Sandarakinorhabdus limnophila, Rhizorhabdus argentea and Sphingomonas wittichii. Int J Syst Evol Microbiol 2016;66:91–100 [CrossRef][PubMed]
    [Google Scholar]
  4. Ren L, Chang X, Jiang F, Kan W, Qu Z et al. Parablastomonas arctica gen. nov., sp. nov., isolated from high Arctic glacial till. Int J Syst Evol Microbiol 2015;65:260–266 [CrossRef][PubMed]
    [Google Scholar]
  5. Fukuda W, Chino Y, Araki S, Kondo Y, Imanaka H et al. Polymorphobacter multimanifer gen. nov., sp. nov., a polymorphic bacterium isolated from Antarctic white rock. Int J Syst Evol Microbiol 2014;64:2034–2040 [CrossRef][PubMed]
    [Google Scholar]
  6. Felföldi T, Vengring A, Márialigeti K, András J, Schumann P et al. Hephaestia caeni gen. nov., sp. nov., a novel member of the family Sphingomonadaceae isolated from activated sludge. Int J Syst Evol Microbiol 2014;64:738–744 [CrossRef][PubMed]
    [Google Scholar]
  7. Balkwill DL, Fredrickson JK, Romine MF. Sphingomonas and related genera The prokaryotes: Springer; 2006; pp.605–629
    [Google Scholar]
  8. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008;24:713–714 [CrossRef][PubMed]
    [Google Scholar]
  9. Hetharua B, Min D, Liao H, Lin L, Xu H et al. Litorivita pollutaquae gen. nov., sp. nov., a marine bacterium in the family Rhodobacteraceae isolated from surface seawater of Xiamen Port, China. Int J Syst Evol Microbiol 2018;68:3908–3913 [CrossRef][PubMed]
    [Google Scholar]
  10. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  11. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  12. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  13. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  15. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992;9:945–967
    [Google Scholar]
  16. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  17. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  18. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  19. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018;36:996–1004 [CrossRef][PubMed]
    [Google Scholar]
  20. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014;196:2210–2215 [CrossRef][PubMed]
    [Google Scholar]
  21. Liao H, Li Y, Zhang M, Lin X, Lai Q et al. Altererythrobacter mangrovi sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2017;67:4851–4856 [CrossRef][PubMed]
    [Google Scholar]
  22. Collins M. Isoprenoid quinone analysis in bacterial classification and identification. Chemical Methods in Bacterial Systematics 1985;267–285
    [Google Scholar]
  23. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. 1990
  24. Kates M. Techniques of Lipidology, 2nd ed. Amsterdam: Elsevier; 1986
    [Google Scholar]
  25. Glaeser SP, Kämpfer P. The family sphingomonadaceae The Prokaryotes: Springer; 2014; pp.641–707
    [Google Scholar]
  26. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990;34:99–119 [CrossRef][PubMed]
    [Google Scholar]
  27. Kim SJ, Moon JY, Lim JM, Ahn JH, Weon HY et al. Sphingomonas aerophila sp. nov. and Sphingomonas naasensis sp. nov., isolated from air and soil, respectively. Int J Syst Evol Microbiol 2014;64:926–932 [CrossRef][PubMed]
    [Google Scholar]
  28. Yang DC, Im WT, Kim MK, Ohta H, Lee ST. Sphingomonas soli sp. nov., a beta-glucosidase-producing bacterium in the family Sphingomonadaceae in the alpha-4 subgroup of the Proteobacteria. Int J Syst Evol Microbiol 2006;56:703–707 [CrossRef][PubMed]
    [Google Scholar]
  29. Kampfer P, Denner EB, Meyer S, Moore ER, Busse HJ. Classification of "Pseudomonas azotocolligans" Anderson 1955, 132, in the Genus Sphingomonas as Sphingomonas trueperi sp. nov. Int J Syst Bacteriol 1997;47:577–583 [CrossRef]
    [Google Scholar]
  30. Son HM, Kook M, Tran HT, Kim KY, Park SY et al. Sphingomonas kyeonggiense sp. nov., isolated from soil of a ginseng field. Antonie Van Leeuwenhoek 2014;105:791–797 [CrossRef][PubMed]
    [Google Scholar]
  31. Yoon JH, Lee MH, Kang SJ, Lee SY, Oh TK, Tk O. Sphingomonas dokdonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2006;56:2165–2169 [CrossRef][PubMed]
    [Google Scholar]
  32. Lee JH, Kim DI, Choe HN, Lee SD, Seong CN. Sphingomonas limnosediminicola sp. nov. and Sphingomonas palustris sp. nov., isolated from freshwater environments. Int J Syst Evol Microbiol 2017;67:2834–2841 [CrossRef][PubMed]
    [Google Scholar]
  33. Lee JH, Kim DI, Kang JW, Seong CN. Sphingomonas lutea sp. nov., isolated from freshwater of an artificial reservoir. Int J Syst Evol Microbiol 2016;66:5493–5499 [CrossRef][PubMed]
    [Google Scholar]
  34. Chen C, Zheng Q, Wang YN, Yan XJ, Hao LK et al. Stakelama pacifica gen. nov., sp. nov., a new member of the family Sphingomonadaceae isolated from the Pacific Ocean. Int J Syst Evol Microbiol 2010;60:2857–2861 [CrossRef][PubMed]
    [Google Scholar]
  35. Thawng CN, Park SJ, Cha JH, Cha CJ. Stakelama sediminis sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2013;63:560–564 [CrossRef][PubMed]
    [Google Scholar]
  36. Kristyanto S, Chaudhary DK, Kim J. Stakelama algicida sp. nov., novel algicidal species of the family Sphingomonadaceae isolated from seawater. Int J Syst Evol Microbiol 2018;68:317–323 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003566
Loading
/content/journal/ijsem/10.1099/ijsem.0.003566
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error