1887

Abstract

A Gram-stain-negative, aerobic, flagellated, rod-shaped bacterial strain, SM1705, was isolated from a surface seawater sample collected from the South China Sea. The strain grew at 10–40 °C and with 0.5–13.0 % (w/v) NaCl. It hydrolysed Tweens 20, 40 and 60, but did not hydrolyse starch or Tween 80 nor reduce nitrate to nitrite. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SM1705 was affiliated with the genus , sharing the highest sequence similarity (96.0 %) with type strain of and forming a coherent branch together with the latter within the clade of . The major cellular fatty acids were identified as summed feature 8 (C 7 and/or C 6), C and C. Polar lipids included three unidentified glycolipids and one unidentified lipid. The major respiratory quinone of strain SM1705 was Q10. The genomic DNA G+C content of strain SM1705 was 59.3 mol%. Based on the polyphasic evidence presented in this paper, strain SM1705 represents a novel species, for which the name sp. nov. is proposed. The type strain is SM1705 (=KCTC 62795=MCCC 1K03505=CCTCC AB 2018345).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003543
2019-08-01
2019-09-22
Loading full text...

Full text loading...

References

  1. Cho JC, Giovannoni SJ. Parvularcula bermudensis gen. nov., sp. nov., a marine bacterium that forms a deep branch in the alpha-Proteobacteria. Int J Syst Evol Microbiol 2003;53:1031–1036 [CrossRef][PubMed]
    [Google Scholar]
  2. Arun AB, Chen WM, Lai WA, Chou JH, Rekha PD et al. Parvularcula lutaonensis sp. nov., a moderately thermotolerant marine bacterium isolated from a coastal hot spring. Int J Syst Evol Microbiol 2009;59:998–1001 [CrossRef][PubMed]
    [Google Scholar]
  3. Yu Z, Lai Q, Li G, Shao Z. Parvularcula dongshanensis sp. nov., isolated from soft coral. Int J Syst Evol Microbiol 2013;63:2114–2117 [CrossRef][PubMed]
    [Google Scholar]
  4. Zhang XQ, Wu YH, Zhou X, Zhang X, Xu XW et al. Parvularcula flava sp. nov., an alphaproteobacterium isolated from surface seawater of the South China Sea. Int J Syst Evol Microbiol 2016;66:3498–3502 [CrossRef][PubMed]
    [Google Scholar]
  5. Li S, Tang K, Liu K, Yu CP, Jiao N. Parvularcula oceani [corrected] sp. nov., isolated from deep-sea water of the Southeastern Pacific Ocean. Antonie van Leeuwenhoek 2014;105:245–251 [CrossRef][PubMed]
    [Google Scholar]
  6. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley: 1991; pp.115–175
    [Google Scholar]
  7. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  8. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  9. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  10. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  11. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  12. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  13. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  14. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  15. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010;20:265–272 [CrossRef][PubMed]
    [Google Scholar]
  16. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007;23:673–679 [CrossRef][PubMed]
    [Google Scholar]
  17. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997;25:955–964 [CrossRef][PubMed]
    [Google Scholar]
  18. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35:3100–3108 [CrossRef][PubMed]
    [Google Scholar]
  19. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  20. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  21. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014;196:2210–2215 [CrossRef][PubMed]
    [Google Scholar]
  22. Komagata K, Suzuki K. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207
    [Google Scholar]
  23. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric Acid. J Appl Bacteriol 1980;48:459–470 [CrossRef]
    [Google Scholar]
  24. Murray RGE, Doetsch RN, Robinow CF. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.21–41
    [Google Scholar]
  25. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003543
Loading
/content/journal/ijsem/10.1099/ijsem.0.003543
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error