1887

Abstract

A novel strain, MRM 9.3, was isolated from a faecal sample of a baby common marmoset (). Cells were Gram-stain-positive, non-motile, non-sporulating, non-haemolytic, facultatively anaerobic and fructose 6-phosphate phosphoketolase-positive. Phylogenetic analyses based on 16S rRNA genes as well as multilocus sequences (representing , , , and genes) and the core genomes revealed that strain MRM 9.3 exhibited phylogenetic relatedness to DSM 100196. Comparative analysis of 16S rRNA gene sequences confirmed the phylogenetic results showing the highest gene sequence identity with strain DSM 100196 (95.6 %). The average nucleotide identity, amino acid average identity and DNA–DNA hybridization values between MRM 9.3 and DSM 100196 were 79.9, 72.1 and 28.5 %, respectively. Phenotypic and genotypic features clearly showed that the strain MRM 9.3 represents a novel species, for which the name sp. nov. is proposed. The type strain is MRM 9.3 (=DSM 103362 =JCM 31788).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003518
2019-08-01
2019-09-22
Loading full text...

Full text loading...

References

  1. Killer J, Kopečný J, Mrázek J, Koppová I, Havlík J et al. Bifidobacterium actinocoloniiforme sp. nov. and Bifidobacterium bohemicum sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol 2011;61:1315–1321 [CrossRef][PubMed]
    [Google Scholar]
  2. Modesto M, Puglisi E, Bonetti A, Michelini S, Spiezio C et al. Bifidobacterium primatium sp. nov., Bifidobacterium scaligerum sp. nov., Bifidobacterium felsineum sp. nov. and Bifidobacterium simiarum sp. nov.: Four novel taxa isolated from the faeces of the cotton top tamarin (Saguinus oedipus) and the emperor tamarin (Saguinus imperator). Syst Appl Microbiol 2018;41:593–603 [CrossRef][PubMed]
    [Google Scholar]
  3. Modesto M, Michelini S, Sansosti MC, de Filippo C, Cavalieri D et al. Bifidobacterium callitrichidarum sp. nov. from the faeces of the emperor tamarin (Saguinus imperator). Int J Syst Evol Microbiol 2018;68:141–148 [CrossRef][PubMed]
    [Google Scholar]
  4. Modesto M, Michelini S, Oki K, Biavati B, Watanabe K et al. Bifidobacterium catulorum sp. nov., a novel taxon from the faeces of the baby common marmoset (Callithrix jacchus). Int J Syst Evol Microbiol 2018;68:575–581 [CrossRef][PubMed]
    [Google Scholar]
  5. Mattarelli P, Biavati B, Holzapfel WH, Wood BJ. The Bifidobacteria and Related Organisms: Biology, Taxonomy, Applications, 1st ed. Elsevier Science Publishing Co Inc; 2017
    [Google Scholar]
  6. Ventura M, Turroni F, Lugli GA, van Sinderen D. Bifidobacteria and humans: our special friends, from ecological to genomics perspectives. J Sci Food Agric 2014;94:163–168 [CrossRef][PubMed]
    [Google Scholar]
  7. Milani C, Lugli GA, Duranti S, Turroni F, Mancabelli L et al. Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. Sci Rep 2015;5:15782 [CrossRef][PubMed]
    [Google Scholar]
  8. Milani C, Mancabelli L, Lugli GA, Duranti S, Turroni F et al. Exploring vertical transmission of Bifidobacteria from mother to child. Appl Environ Microbiol 2015;81:7078–7087 [CrossRef][PubMed]
    [Google Scholar]
  9. Mancabelli L, Milani C, Lugli GA, Turroni F, Mangifesta M et al. Unveiling the gut microbiota composition and functionality associated with constipation through metagenomic analyses. Sci Rep 2017;7:9879 [CrossRef][PubMed]
    [Google Scholar]
  10. Endo A, Futagawa-Endo Y, Schumann P, Pukall R, Dicks LM. Bifidobacterium reuteri sp. nov., Bifidobacterium callitrichos sp. nov., Bifidobacterium saguini sp. nov., Bifidobacterium stellenboschense sp. nov. and Bifidobacterium biavatii sp. nov. isolated from faeces of common marmoset (Callithrix jacchus) and red-handed tamarin (Saguinus midas). Syst Appl Microbiol 2012;35:92–97 [CrossRef][PubMed]
    [Google Scholar]
  11. Michelini S, Modesto M, Oki K, Stenico V, Stefanini I et al. Isolation and identification of cultivable Bifidobacterium spp. from the faeces of 5 baby common marmosets (Callithrix jacchus L.). Anaerobe 2015;33:101–104 [CrossRef][PubMed]
    [Google Scholar]
  12. Modesto M, Michelini S, Stefanini I, Ferrara A, Tacconi S et al. Bifidobacterium aesculapii sp. nov., from the faeces of the baby common marmoset (Callithrix jacchus). Int J Syst Evol Microbiol 2014;64:2819–2827 [CrossRef]
    [Google Scholar]
  13. Michelini S, Oki K, Yanokura E, Shimakawa Y, Modesto M et al. Bifidobacterium myosotis sp. nov., Bifidobacterium tissieri sp. nov. and Bifidobacterium hapali sp. nov., isolated from faeces of baby common marmosets (Callithrix jacchus L.). Int J Syst Evol Microbiol 2016;66:255–265 [CrossRef][PubMed]
    [Google Scholar]
  14. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T et al. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res 2014;42:D581–D591 [CrossRef][PubMed]
    [Google Scholar]
  15. Cashion P, Holder-Franklin MA, Mccully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977;81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  16. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  17. Killer J, Kopečný J, Mrázek J, Havlík J, Koppová I et al. Bombiscardovia coagulans gen. nov., sp. nov., a new member of the family Bifidobacteriaceae isolated from the digestive tract of bumblebees. Syst Appl Microbiol 2010;33:359–366 [CrossRef][PubMed]
    [Google Scholar]
  18. Cavalli-Sforza LL, Edwards AWF. Phylogenetic analysis. Models and estimation procedures. Evolution 1967;21:550–570
    [Google Scholar]
  19. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  20. Ventura M, Canchaya C, del Casale A, Dellaglio F, Neviani E et al. Analysis of bifidobacterial evolution using a multilocus approach. Int J Syst Evol Microbiol 2006;56:2783–2792 [CrossRef][PubMed]
    [Google Scholar]
  21. Jian W, Zhu L, Dong X. New approach to phylogenetic analysis of the genus Bifidobacterium based on partial HSP60 gene sequences. Int J Syst Evol Microbiol 2001;51:1633–1638 [CrossRef][PubMed]
    [Google Scholar]
  22. Kim BJ, Kim HY, Yun YJ, Kim BJ, Kook YH. Differentiation of Bifidobacterium species using partial RNA polymerase {beta}-subunit (rpoB) gene sequences. Int J Syst Evol Microbiol 2010;60:2697–2704 [CrossRef][PubMed]
    [Google Scholar]
  23. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013;30:772–780 [CrossRef][PubMed]
    [Google Scholar]
  24. Lugli GA, Milani C, Turroni F, Duranti S, Mancabelli L et al. Comparative genomic and phylogenomic analyses of the Bifidobacteriaceae family. BMC Genomics 2017;18:568 [CrossRef][PubMed]
    [Google Scholar]
  25. Tanizawa Y, Fujisawa T, Kaminuma E, Nakamura Y, Arita M. DFAST and DAGA: web-based integrated genome annotation tools and resources. Biosci Microbiota Food Health 2016;35:173–184 [CrossRef][PubMed]
    [Google Scholar]
  26. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009;25:1972–1973 [CrossRef][PubMed]
    [Google Scholar]
  27. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  28. Pineiro M, Stanton C. Probiotic bacteria: legislative framework-requirements to evidence basis. J Nutr 2007;137:850S–853 [CrossRef][PubMed]
    [Google Scholar]
  29. Orban JI, Patterson JA. Modification of the phosphoketolase assay for rapid identification of bifidobacteria. J Microbiol Methods 2000;40:221–224 [CrossRef][PubMed]
    [Google Scholar]
  30. Schumann P. Peptidoglycan structure. In Rainey F, Oren A. (editors) Taxonomy of Prokaryotes. Methods in Microbiolvol. 38 London: Academic Press; 2011; pp.101–129
    [Google Scholar]
  31. Mattarelli P, Holzapfel W, Franz CM, Endo A, Felis GE et al. Recommended minimal standards for description of new taxa of the genera Bifidobacterium, Lactobacillus and related genera. Int J Syst Evol Microbiol 2014;64:1434–1451 [CrossRef][PubMed]
    [Google Scholar]
  32. Hoyles L, Inganäs E, Falsen E, Drancourt M, Weiss N et al. Bifidobacterium scardovii sp. nov., from human sources. Int J Syst Evol Microbiol 2002;52:995–999 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003518
Loading
/content/journal/ijsem/10.1099/ijsem.0.003518
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error