1887

Abstract

A Gram-stain-negative, aerobic, yellow-pigmented, oxidase-positive and rod-shaped bacterium, designated PRB40, was isolated from the Godavari River in India during the course of ‘Kumbh Mela’, the world’s largest mass gathering event. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain PRB40 formed a lineage within the family and was distinct from the most closely related genera , and with sequence similarity values ≤95.2 %. Growth of strain PRB40 occurred at 10–40 °C (optimum 30 °C), at pH 6.0–9.0 (pH 7.0) and with 0–0.5 % (w/v) NaCl concentration (0 %). The major respiratory quinone was ubiquinone-10 (Q-10). It contained Cω6, C 2-OH, summed feature 3 (Cω7 and/or Cω6) and summed feature 8 (C 7 and/or C 6) as the major cellular fatty acids. The predominant polar lipids were phospholipid, phosphatidylethanolamine and sphingoglycolipid. It took -homospermidine as the major polyamine. The DNA G+C content based on its draft genome sequence was 63.7 mol%. The polyphasic taxonomic analyses indicated that strain PRB40 represents a novel species of a novel genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is PRB40 (=MCC 3406=GDMCC 1.1197=KCTC 52678=LMG 29985).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003512
2019-08-01
2019-12-06
Loading full text...

Full text loading...

References

  1. Kosako Y, Yabuuchi E, Naka T, Fujiwara N, Kobayashi K. Proposal of Sphingomonadaceae fam. nov., consisting of Sphingomonas Yabuuchi et al. 1990, Erythrobacter Shiba and Shimidu 1982, Erythromicrobium Yurkov et al. 1994, Porphyrobacter Fuerst et al. 1993, Zymomonas Kluyver and van Niel 1936, and Sandaracinobacter Yurkov et al. 1997, with the type genus Sphingomonas Yabuuchi et al. 1990. Microbiol Immunol 2000;44:563–575 [CrossRef][PubMed]
    [Google Scholar]
  2. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990;34:99–119 [CrossRef][PubMed]
    [Google Scholar]
  3. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001;51:1405–1417 [CrossRef][PubMed]
    [Google Scholar]
  4. Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I et al. Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol 2002;52:1485–1496 [CrossRef][PubMed]
    [Google Scholar]
  5. Busse HJ, Denner EB, Buczolits S, Salkinoja-Salonen M, Bennasar A et al. Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 2003;53:1253–1260 [CrossRef][PubMed]
    [Google Scholar]
  6. Chen H, Jogler M, Rohde M, Klenk HP, Busse HJ et al. Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas. Int J Syst Evol Microbiol 2012;62:2835–2843 [CrossRef][PubMed]
    [Google Scholar]
  7. Sheu SY, Liu LP, Young CC, Chen WM. Novosphingobium fontis sp. nov., isolated from a spring. Int J Syst Evol Microbiol 2017;67:2423–2429 [CrossRef][PubMed]
    [Google Scholar]
  8. Chen H, Jogler M, Rohde M, Klenk HP, Busse HJ et al. Sphingobium limneticum sp. nov. and Sphingobium boeckii sp. nov., two freshwater planktonic members of the family Sphingomonadaceae, and reclassification of Sphingomonas suberifaciens as Sphingobium suberifaciens comb. nov. Int J Syst Evol Microbiol 2013;63:735–743 [CrossRef][PubMed]
    [Google Scholar]
  9. Suzuki S, Hiraishi A. Novosphingobium naphthalenivorans sp. nov., a naphthalene-degrading bacterium isolated from polychlorinated-dioxin-contaminated environments. J Gen Appl Microbiol 2007;53:221–228 [CrossRef][PubMed]
    [Google Scholar]
  10. Gupta SK, Lal D, Lal R. Novosphingobium panipatense sp. nov. and Novosphingobium mathurense sp. nov., from oil-contaminated soil. Int J Syst Evol Microbiol 2009;59:156–161 [CrossRef][PubMed]
    [Google Scholar]
  11. Liang Q, Lloyd-Jones G. Sphingobium scionense sp. nov., an aromatic hydrocarbon-degrading bacterium isolated from contaminated sawmill soil. Int J Syst Evol Microbiol 2010;60:413–416 [CrossRef][PubMed]
    [Google Scholar]
  12. Kämpfer P, Young CC, Busse HJ, Lin SY, Rekha PD et al. Novosphingobium soli sp. nov. isolated from soil Int J Syst Evol Microbiol 2011;61:259–263
    [Google Scholar]
  13. Chaudhary DK, Kim J. Novosphingobium naphthae sp. nov., from oil-contaminated soil. Int J Syst Evol Microbiol 2016;66:3170–3176 [CrossRef][PubMed]
    [Google Scholar]
  14. Zhang J, Lang ZF, Zheng JW, Hang BJ, Duan XQ et al. Sphingobium jiangsuense sp. nov., a 3-phenoxybenzoic acid-degrading bacterium isolated from a wastewater treatment system. Int J Syst Evol Microbiol 2012;62:800–805 [CrossRef][PubMed]
    [Google Scholar]
  15. Glaeser SP, Kämpfer P. The family Sphingomonadaceae. The Prokaryotes 2014;641–707
    [Google Scholar]
  16. Jogler M, Chen H, Simon J, Rohde M, Busse HJ et al. Description of Sphingorhabdus planktonica gen. nov., sp. nov. and reclassification of three related members of the genus Sphingopyxis in the genus Sphingorhabdus gen. nov. Int J Syst Evol Microbiol 2013;63:1342–1349 [CrossRef][PubMed]
    [Google Scholar]
  17. Felföldi T, Vengring A, Márialigeti K, András J, Schumann P et al. Hephaestia caeni gen. nov., sp. nov., a novel member of the family Sphingomonadaceae isolated from activated sludge. Int J Syst Evol Microbiol 2014;64:738–744 [CrossRef][PubMed]
    [Google Scholar]
  18. Fukuda W, Chino Y, Araki S, Kondo Y, Imanaka H et al. Polymorphobacter multimanifer gen. nov., sp. nov., a polymorphic bacterium isolated from Antarctic white rock. Int J Syst Evol Microbiol 2014;64:2034–2040 [CrossRef][PubMed]
    [Google Scholar]
  19. Francis IM, Jochimsen KN, de Vos P, van Bruggen AH. Reclassification of rhizosphere bacteria including strains causing corky root of lettuce and proposal of Rhizorhapis suberifaciens gen. nov., comb. nov., Sphingobium mellinum sp. nov., Sphingobium xanthum sp. nov. and Rhizorhabdus argentea gen. nov., sp. nov. Int J Syst Evol Microbiol 2014;64:1340–1350 [CrossRef][PubMed]
    [Google Scholar]
  20. Ren L, Chang X, Jiang F, Kan W, Qu Z et al. Parablastomonas arctica gen. nov., sp. nov., isolated from high Arctic glacial till. Int J Syst Evol Microbiol 2015;65:260–266 [CrossRef][PubMed]
    [Google Scholar]
  21. Liu K, Li S, Jiao N, Tang K. Pacificamonas flava gen. nov., sp. nov., a novel member of the family Sphingomonadaceae isolated from the Southeastern Pacific. Curr Microbiol 2014;69:96–101 [CrossRef][PubMed]
    [Google Scholar]
  22. Kim M, Kang O, Zhang Y, Ren L, Chang X et al. Sphingoaurantiacus polygranulatus gen. nov., sp. nov., isolated from high Arctic tundra soil, emended description of the genera Sandarakinorhabdus, Polymorphobacter and Rhizorhabdus. Int J Syst Evol Microbiol 2015;66:91–100
    [Google Scholar]
  23. Jani K, Ghattargi V, Pawar S, Inamdar M, Shouche Y et al. Anthropogenic activities induce depletion in microbial communities at urban sites of the river ganges. Curr Microbiol 2018;75:79–83 [CrossRef][PubMed]
    [Google Scholar]
  24. Jani K, Khare K, Senik S, Karodi P, Vemuluri VR et al. Corynebacterium godavarianum sp. nov., isolated from the Godavari river, India. Int J Syst Evol Microbiol 2018;68:241–247 [CrossRef][PubMed]
    [Google Scholar]
  25. Memish ZA, Steffen R, White P, Dar O, Azhar EI et al. Mass gatherings medicine: public health issues arising from mass gathering religious and sporting events. Lancet 2019;393:2073–2084 [CrossRef][PubMed]
    [Google Scholar]
  26. Jani K, Dhotre D, Bandal J, Shouche Y, Suryavanshi M et al. World's largest mass bathing event influences the bacterial communities of Godavari, a Holy River of India. Microb Ecol 2018;76:706–718 [CrossRef][PubMed]
    [Google Scholar]
  27. Sharma A, Shouche Y. Microbial culture collection (MCC) and International Depositary Authority (IDA) at national centre for cell science, Pune. Indian J Microbiol 2014;54:129–133 [CrossRef][PubMed]
    [Google Scholar]
  28. Sharma A, Pandey A, Shouche YS, Kumar B, Kulkarni G. Characterization and identification of Geobacillus spp. isolated from Soldhar hot spring site of Garhwal Himalaya, India. J Basic Microbiol 2009;49:187–194 [CrossRef][PubMed]
    [Google Scholar]
  29. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acids Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp.115–1
    [Google Scholar]
  30. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  31. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  32. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  33. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  34. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  35. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  36. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  37. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  38. Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014;64:352–356 [CrossRef][PubMed]
    [Google Scholar]
  39. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  40. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018;56:280–285 [CrossRef][PubMed]
    [Google Scholar]
  41. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res 2017;45:D535–D542 [CrossRef][PubMed]
    [Google Scholar]
  42. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 2016;44:D286–D293 [CrossRef][PubMed]
    [Google Scholar]
  43. Sharma A, Dhar SK, Prakash O, Vemuluri VR, Thite V et al. Description of Domibacillus indicus sp. nov., isolated from ocean sediments and emended description of the genus Domibacillus. Int J Syst Evol Microbiol 2014;64:3010–3015 [CrossRef][PubMed]
    [Google Scholar]
  44. Sharma A, Jani K, Feng GD, Karodi P, Vemuluri VR et al. Subsaxibacter sediminis sp. nov., isolated from Arctic glacial sediment and emended description of the genus Subsaxibacter. Int J Syst Evol Microbiol 2018;68:1678–1682 [CrossRef][PubMed]
    [Google Scholar]
  45. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  46. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996;42:457–469 [CrossRef]
    [Google Scholar]
  47. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  48. Feng GD, Yang SZ, Xiong X, Li HP, Zhu HH. Sphingomonas spermidinifaciens sp. nov., a novel bacterium containing spermidine as the major polyamine, isolated from an abandoned lead-zinc mine and emended descriptions of the genus Sphingomonas and the species Sphingomonas yantingensis and Sphingomonas japonica. Int J Syst Evol Microbiol 2017;67:2160–2165 [CrossRef][PubMed]
    [Google Scholar]
  49. Takeuchi M, Sakane T, Yanagi M, Yamasato K, Hamana K et al. Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov. Int J Syst Bacteriol 1995;45:334–341 [CrossRef][PubMed]
    [Google Scholar]
  50. Yabuuchi E, Kosako Y. Genus I. Sphingomonas Yabuuchi, Yano, Oyaizu, Hashimoto, Ezaki and Yamamoto 1990b, 321VP. In Brenner DJ, Kreig NR, Staley JT, Garrity GM. (editors) In Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 2 New York: Springer; 2005b; pp.234–258
    [Google Scholar]
  51. Park JM, Park S, Jung YT, Kim H, Lee JS et al. Sphingorhabdus arenilitoris sp. nov., isolated from a coastal sand, and reclassification of Sphingopyxis rigui as Sphingorhabdus rigui comb. nov. and Sphingopyxis wooponensis as Sphingorhabdus wooponensis comb. nov. Int J Syst Evol Microbiol 2014;64:2551–2557 [CrossRef][PubMed]
    [Google Scholar]
  52. Kämpfer P, Denner EB, Meyer S, Moore ER, Busse HJ. Classification of "Pseudomonas azotocolligans" Anderson 1955, 132, in the genus Sphingomonas as Sphingomonas trueperi sp. nov. Int J Syst Bacteriol 1997;47:577–583 [CrossRef][PubMed]
    [Google Scholar]
  53. Lee JC, Kim SG, Whang KS. Novosphingobium aquiterrae sp. nov., isolated from ground water. Int J Syst Evol Microbiol 2014;64:3282–3287 [CrossRef][PubMed]
    [Google Scholar]
  54. Srinivasan S, Kim MK, Sathiyaraj G, Veena V, Mahalakshmi M et al. Sphingopyxis panaciterrulae sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2010;60:2358–2363 [CrossRef][PubMed]
    [Google Scholar]
  55. Chen H, Piao AL, Tan X, Nogi Y, Yeo J et al. Sphingorhabdus buctiana sp. nov., isolated from fresh water, and reclassification of Sphingopyxis contaminans as Sphingorhabdus contaminans comb. nov. Antonie van Leeuwenhoek 2018;111:323–331 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003512
Loading
/content/journal/ijsem/10.1099/ijsem.0.003512
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error