1887

Abstract

Strain YZ-8, isolated from soil sampled at Fildes Peninsula, Antarctica, was found to be a Gram-stain-negative, yellow-pigmented, oxidase- and catalase-positive, non-motile, non-spore-forming, rod-shaped and aerobic bacterium. Strain YZ-8 grewoptimally at pH 7.0 and 20 °C. Tolerance to NaCl was up to 0.3 % (w/v) with optimum growth in the absence of NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YZ-8 belonged to the family . Strain YZ-8 showed the highest sequence similarities to KMM 3882 (94.4 %), JCM 12082 (94.4 %), SN6-9 (94.3 %) and W1-2-1 (94.3 %). The predominant respiratory isoprenoid quinone and polyamine components were identified as ubiquinone Q-10 and -homospermidine, respectively. In addition, carotenoid were also found. The polar lipid profile of the strain YZ-8 was found to contain one phosphatidylethanolamine, an unidentified phospholipid, one diphosphatidylglycerol, one phosphatidylglycerol, two sphingophosphonolipids, one phosphatidylcholine and two unidentified alkali-stable lipids. The G+C content of the genomic DNA was determined to be 58.8 mol%. The main fatty acids were summed feature 8 (comprising Cω7 and/or Cω6; 35.4 %), summed feature 3 (comprising Cω7 and/or Cω6; 32.6 %) and C 2-OH (7.7 %). On the basis of the evidence presented in this study, a novel species of the genus , sp. nov., is proposed, with the type strain YZ-8 (=CCTCC AB 2017137=LMG 31027).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003504
2019-10-31
2019-11-12
Loading full text...

Full text loading...

References

  1. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990;34: 99– 119 [CrossRef] [PubMed]
    [Google Scholar]
  2. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001;51: 1405– 1417 [CrossRef] [PubMed]
    [Google Scholar]
  3. Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I et al. Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol 2002;52: 1485– 1496 [CrossRef] [PubMed]
    [Google Scholar]
  4. Busse HJ, Denner EB, Buczolits S, Salkinoja-Salonen M, Bennasar A et al. Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 2003;53: 1253– 1260 [CrossRef] [PubMed]
    [Google Scholar]
  5. Chen H, Jogler M, Rohde M, Klenk HP, Busse HJ et al. Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas. Int J Syst Evol Microbiol 2012;62: 2835– 2843 [CrossRef] [PubMed]
    [Google Scholar]
  6. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991
    [Google Scholar]
  7. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62: 716– 721 [CrossRef] [PubMed]
    [Google Scholar]
  8. Chun J, Lee JH, Jung Y, Kim M, Kim S et al. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 2007;57: 2259– 2261 [CrossRef] [PubMed]
    [Google Scholar]
  9. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  10. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25: 4876– 4882 [CrossRef] [PubMed]
    [Google Scholar]
  11. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  12. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  13. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20: 406– 416 [CrossRef]
    [Google Scholar]
  14. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  15. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  16. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44: 846– 849 [CrossRef]
    [Google Scholar]
  17. Choi GM, Jo JH, Kang MS, Kim MS, Lee SY et al. Sphingomonas aquatica sp. nov., isolated from tap water. Int J Syst Evol Microbiol 2017;67: 845– 850 [CrossRef] [PubMed]
    [Google Scholar]
  18. Huang Y, Wei Z, Danzeng W, Kim MC, Zhu G et al. Sphingomonas antarctica sp. nov., isolated from Antarctic tundra soil. Int J Syst Evol Microbiol 2017;67: 4064– 4068 [CrossRef] [PubMed]
    [Google Scholar]
  19. Lee KC, Kim KK, Eom MK, Kim JS, Kim DS et al. Sphingomonas gotjawalisoli sp. nov., isolated from soil of a lava forest. Int J Syst Evol Microbiol 2017;67: 2975– 2979 [CrossRef] [PubMed]
    [Google Scholar]
  20. Ko Y, Hwang WM, Kim M, Kang K, Ahn TY. Sphingomonas silvisoli sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2017;67: 2704– 2710 [CrossRef] [PubMed]
    [Google Scholar]
  21. Doetsch RN. Determinative methods of light microscopy. In Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. (editors) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981; pp. 21– 33
    [Google Scholar]
  22. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000;50: 1861– 1868 [CrossRef] [PubMed]
    [Google Scholar]
  23. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956;178: 703 [CrossRef] [PubMed]
    [Google Scholar]
  24. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  25. Moore DD, Dowhan D. Preparation and analysis of DNA. In Ausubel FW, Brent R, Kingston RE, Moore DD, Seidman JG et al. (editors) Current Protocols in Molecular Biology New York: Wiley; 1995; pp. 2– 11
    [Google Scholar]
  26. Kojima H, Watanabe M, Tokizawa R, Shinohara A, Fukui M. Hymenobacter nivis sp. nov., isolated from red snow in Antarctica. Int J Syst Evol Microbiol 2016;66: 4821– 4825 [CrossRef] [PubMed]
    [Google Scholar]
  27. Roberts RJ, Carneiro MO, Schatz MC. The advantages of SMRT sequencing. Genome Biol 2013;14: 405 [CrossRef] [PubMed]
    [Google Scholar]
  28. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013;10: 563– 569 [CrossRef] [PubMed]
    [Google Scholar]
  29. Miller JR, Delcher AL, Koren S, Venter E, Walenz BP et al. Aggressive assembly of pyrosequencing reads with mates. Bioinformatics 2008;24: 2818– 2824 [CrossRef] [PubMed]
    [Google Scholar]
  30. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100: 221– 230 [CrossRef] [PubMed]
    [Google Scholar]
  31. Xie CH, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003;49: 345– 349 [CrossRef] [PubMed]
    [Google Scholar]
  32. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI technical note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  33. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66: 199– 202 [CrossRef]
    [Google Scholar]
  34. Kato M, Muto Y, Tanaka-Bandoh K, Watanabe K, Ueno K. Sphingolipid composition in Bacteroides species. Anaerobe 1995;1: 135– 139 [CrossRef] [PubMed]
    [Google Scholar]
  35. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the proteobacteria. Syst Appl Microbiol 1988;11: 1– 8 [CrossRef]
    [Google Scholar]
  36. Busse HJ, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997;47: 698– 708 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003504
Loading
/content/journal/ijsem/10.1099/ijsem.0.003504
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error