1887

Abstract

A novel Gram-stain-positive, non-motile, rod-shaped, non-spore-forming bacterium, designated HLT2-9, was isolated from the ice tongue surface of Hailuogou Glacier in Sichuan Province, PR China. Colonies of cells were cream yellow, convex and round. Growth occurred at 0–27 °C (optimum, 20 °C), pH 7.0–10.0 (pH 7.0) and in the presence of 0–2.0 % (w/v) NaCl (0 %). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain HLT2-9 belonged to the genus . The highest level of sequence similarities were found to CGMCC1.11097 (99.24 %), CGMCC 4.6882 (98.54 %) and CGMCC 4.6875 (98.54 %). However, the low average nucleotide identity (85.6–87.9 %) and digital DNA–DNA hybridization values (26.4–30.2 %) of strain HLT2-9 to its three closest relatives demonstrated that it represents a novel species of the genus . The major cellular fatty acids of strain HLT2-9 were C 8 and iso-C. Strain HLT2-9 contained -2,6-diaminopimelic acid as the diamino acid in the cell-wall peptidoglycan. The predominant menaquinone is MK-8(H). The G+C content of the genomic DNA was 70.65 mol%. Based on evidence collected from the phenotypic, genotypic and phylogenetic analyses, a novel species sp. nov. is proposed, with HLT2-9 (=CGMCC 1.11084=NBRC 109783) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003471
2019-08-01
2019-10-16
Loading full text...

Full text loading...

References

  1. Prauser H. Nocardioides, a new genus of the order Actinomycetales. Int J Syst Bacteriol 1976;26:58–65 [CrossRef]
    [Google Scholar]
  2. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018;68:1825–1829 [CrossRef][PubMed]
    [Google Scholar]
  3. Xie F, Yang Y, Ma H, Quan S, Yue D et al. Nocardioides phosphati sp. nov., an actinomycete isolated from a phosphate mine. Int J Syst Evol Microbiol 2017;67:1522–1528 [CrossRef][PubMed]
    [Google Scholar]
  4. Ikunaga Y, Sato I, Grond S, Numaziri N, Yoshida S et al. Nocardioides sp. strain WSN05-2, isolated from a wheat field, degrades deoxynivalenol, producing the novel intermediate 3-epi-deoxynivalenol. Appl Microbiol Biotechnol 2011;89:419–427 [CrossRef][PubMed]
    [Google Scholar]
  5. Fida TT, Palamuru S, Pandey G, Spain JC. Aerobic biodegradation of 2,4-Dinitroanisole by Nocardioides sp. strain JS1661. Appl Environ Microbiol 2014;80:7725–7731 [CrossRef][PubMed]
    [Google Scholar]
  6. Piutti S, Semon E, Landry D, Hartmann A, Dousset S et al. Isolation and characterisation of Nocardioides sp. SP12, an atrazine-degrading bacterial strain possessing the gene trzN from bulk- and maize rhizosphere soil. FEMS Microbiol Lett 2003;221:111–117 [CrossRef][PubMed]
    [Google Scholar]
  7. Sun LN, Zhang J, Gong FF, Wang X, Hu G et al. Nocardioides soli sp. nov., a carbendazim-degrading bacterium isolated from soil under the long-term application of carbendazim. Int J Syst Evol Microbiol 2014;64:2047–2052 [CrossRef][PubMed]
    [Google Scholar]
  8. Qin S, Yuan B, Zhang YJ, Bian GK, Tamura T et al. Nocardioides panzhihuaensis sp. nov., a novel endophytic actinomycete isolated from medicinal plant Jatropha curcas L. Antonie van Leeuwenhoek 2012;102:353–360 [CrossRef][PubMed]
    [Google Scholar]
  9. Xu H, Zhang S, Cheng J, Asem MD, Zhang MY et al. Nocardioides ginkgobilobae sp. nov., an endophytic actinobacterium isolated from the root of the living fossil Ginkgo biloba L. Int J Syst Evol Microbiol 2016;66:2013–2018 [CrossRef][PubMed]
    [Google Scholar]
  10. Lee DW, Lee SD. Aeromicrobium ponti sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2008;58:987–991 [CrossRef][PubMed]
    [Google Scholar]
  11. Ahn JH, Lim JM, Kim SJ, Song J, Kwon SW et al. Nocardioides paucivorans sp. nov. isolated from soil. J Microbiol 2014;52:990–994 [CrossRef][PubMed]
    [Google Scholar]
  12. Yi H, Chun J. Nocardioides ganghwensis sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2004;54:1295–1299 [CrossRef][PubMed]
    [Google Scholar]
  13. Zhang DC, Schumann P, Redzic M, Zhou YG, Liu HC et al. Nocardioides alpinus sp. nov., a psychrophilic actinomycete isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 2012;62:445–450 [CrossRef][PubMed]
    [Google Scholar]
  14. Deng S, Chang X, Zhang Y, Ren L, Jiang F et al. Nocardioides antarcticus sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2015;65:2615–2621 [CrossRef][PubMed]
    [Google Scholar]
  15. Lawson PA, Collins MD, Schumann P, Tindall BJ, Hirsch P et al. New LL-diaminopimelic acid-containing actinomycetes from hypersaline, heliothermal and meromictic Antarctic Ekho Lake: Nocardioides aquaticus sp. nov. and Friedmanniella [Correction of Friedmannielly] lacustris sp. nov. Syst Appl Microbiol 2000;23:219–229 [CrossRef][PubMed]
    [Google Scholar]
  16. Liu Q, Liu HC, Zhang JL, Zhou YG, Xin YH. Nocardioides glacieisoli sp. nov., isolated from a glacier. Int J Syst Evol Microbiol 2015;65:4845–4849 [CrossRef][PubMed]
    [Google Scholar]
  17. Liu Q, Xin YH, Liu HC, Zhou YG, Wen Y. Nocardioides szechwanensis sp. nov. and Nocardioides psychrotolerans sp. nov., isolated from a glacier. Int J Syst Evol Microbiol 2013;63:129–133 [CrossRef][PubMed]
    [Google Scholar]
  18. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985;49:1–7[PubMed]
    [Google Scholar]
  19. Schippers A, Schumann P, Spröer C. Nocardioides oleivorans sp. nov., a novel crude-oil-degrading bacterium. Int J Syst Evol Microbiol 2005;55:1501–1504 [CrossRef][PubMed]
    [Google Scholar]
  20. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  21. Hendrickson DA, Krenz MM. Reagents and stains. In Balows A, Hausler Jr WJ, Herrmann KL, Isenberg HD, Shadomy HJ et al. (editors) Manual of Clinical Microbiology Washington, DC: American Society for Microbiology; 1991; pp.1289–1314
    [Google Scholar]
  22. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  23. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983;29:319–322 [CrossRef]
    [Google Scholar]
  24. Collins MD. Isoprenoid quinone analysis in classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics. London: Academic Press; 1985; pp.267–287
    [Google Scholar]
  25. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar Lipid Composition in the Classification of Nocardia and Related Bacteria. Int J Syst Bacteriol 1977;27:104–117 [CrossRef]
    [Google Scholar]
  26. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical Note 101. Newark, DE: MIDI; 1990
    [Google Scholar]
  27. O'Donnell AG, Goodfellow M, Minnikin DE. Lipids in the classification of Nocardioides: reclassification of Arthrobacter simplex (Jensen) lochhead in the genus Nocardioides (Prauser) emend. O'Donnell et al. as Nocardioides simplex comb. nov. Arch Microbiol 1982;133:323–329 [CrossRef][PubMed]
    [Google Scholar]
  28. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  29. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  30. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  31. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  32. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  33. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  34. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  35. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018;56:280–285 [CrossRef][PubMed]
    [Google Scholar]
  36. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013;30:772–780 [CrossRef][PubMed]
    [Google Scholar]
  37. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015;32:268–274 [CrossRef][PubMed]
    [Google Scholar]
  38. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018;9:5114 [CrossRef][PubMed]
    [Google Scholar]
  39. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  40. Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016;44:6614–6624 [CrossRef][PubMed]
    [Google Scholar]
  41. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464
    [Google Scholar]
  42. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003471
Loading
/content/journal/ijsem/10.1099/ijsem.0.003471
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error